Discrete Mathematics

Number Theory \& Cryptography

- Divisibility and Congruence
- Modular Arithmetic and its Applications
- GCD, (Extended) Euclidean Algorithm, Relative Prime
- The Caesar Cipher and Affine Cipher, Modular Inverse
- The Chinese Remainder Theorem
- Fermat's Little Theorem and Modular Exponentiation
- Private and Public Key Cryptography, The RSA Cryptosystem

Imdad ullah Khan

Arithmetic Rules

Assume arithmetic rules for operations $+, *,-$ on the set of integers

- $a(b+c)=a b+a c$
- $a b=b a$
- $a(b c)=(a b) c$
- $a * 1=a$

■ $a * 0=0$

- $a+0=a$
- $a-a=0$

■ $a+1>a$

The divides operator

Definition

For $a, b \in \mathbb{Z}, a \neq 0$, we say $a \mid b:(a$ divides $b) \quad$ if $\quad \exists c \in \mathbb{Z}: b=a c$

- $4 \mid 12$
$\triangleright 12=4 \cdot 3$
- $1 \mid 8$
$\triangleright 8=1 \cdot 8$
- $3 \mid 12$
$\triangleright 12=3 \cdot 4$
- $-2 \mid 6$
$\triangleright 6=-2 \cdot-3$
- $5 \mid 0$
$\triangleright 0=5 \cdot 0$
- $-6 \mid-12$
$\triangleright-12=-6 \cdot 2$
- $3 \nmid 7$
- $-4 \nmid 13$
- a is a factor or divisor of b
- b is a multiple of a

Divisibility Facts

$$
\begin{array}{ll}
\mathbf{1} \forall n 1 \mid n & \triangleright n=1 \cdot n \\
\text { 2 } \forall n n \mid n & \triangleright n=n \cdot 1 \\
\text { 3 } \forall n n \mid 0 & \triangleright 0=n \cdot 0 \\
\text { 4 } \forall n-1 \mid n & \triangleright n=-1 \cdot-n \\
\text { 5 } \forall n-n \mid n & \triangleright n=-n \cdot-1
\end{array}
$$

Divisibility Facts

Theorem

$1 a|b \Longrightarrow a| b c$
For $a, b, c \in \mathbb{Z}$
$2 a|b \wedge b| c \Longrightarrow a \mid c$
$3 a|b \wedge a| c \Longrightarrow a \mid b+c$

$$
\begin{array}{r}
\triangleright 3|6 \Longrightarrow 3| 6 \cdot 2 \\
\triangleright 2|4 \wedge 4| 8 \Longrightarrow 2 \mid 8 \\
\triangleright 2|4 \wedge 2| 8 \Longrightarrow 2 \mid 8+4
\end{array}
$$

Corollary: $\quad a|b \wedge a| c \Longrightarrow a \mid m b+n c, \quad m, n \in \mathbb{Z}$

$$
\triangleright 2|4 \wedge 2| 8 \Longrightarrow 2 \mid 3 \cdot 8+5 \cdot 4
$$

Divisibility Facts

Corollary: $a|b \wedge a| c \Longrightarrow a \mid m b+n c, \quad m, n \in \mathbb{Z}$

Proof: Number theory proofs generally use definition and basic arithmetic

$$
\begin{aligned}
& a|b \wedge a| c \Longrightarrow \exists x, y: b=a x \wedge c=a y \\
& m b=m(a x)=a(m x) \Longrightarrow a \mid m b \\
& n c=n(a y)=a(n y) \Longrightarrow a \mid n c
\end{aligned}
$$

By Theorem part (2) a $\mid m b+n c$

The Division Algorithm

Theorem (The Division Algorithm)

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \leq r<d$ such that $a=d q+r$

- q : quotient (a, d)

■ r : remainder (a, d)

- d : divisor

■ a : dividend

Clearly with a and $d>0, q$ and r are uniquely defined

Congruence

For $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}, \quad a \equiv_{m} b \quad$ iff $\quad m \mid(a-b)$
pronounced as a is congruent to b modulo m
\triangleright Standard notation for $a \equiv_{m} b$ is $a \equiv b(\bmod m)$

Theorem: Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$.
Then $a \equiv_{m} b \quad$ iff $\quad a \% m=b \% m$
$3 \equiv{ }_{3} 6, \quad 3 \equiv_{3} 3, \quad 7 \equiv_{5} 2 \quad-3 \equiv_{5} 2, \quad-1 \equiv_{3}-4$
To avoid confusion between standard notaitons - $(\bmod m)$ vs $\bmod m$, we use our notation.

Note that $\% m$ is an operator, while \equiv_{m} is an equivalence relation over \mathbb{Z}

Congruence

Congruence Facts

Fact

$1 a \equiv_{m} a$
$2 a \equiv_{m} b \Longleftrightarrow b \equiv_{m} a$
$3 a \equiv_{m} b \wedge b \equiv_{m} c \Longrightarrow a \equiv_{m} c$
$\triangleright \equiv_{m}$ is an equivalence relation on \mathbb{Z}
$4 a \equiv_{m}(a \% m)$

Congruence

Theorem

$a \equiv_{m} b \Longleftrightarrow \exists k \in \mathbb{Z}: a=b+k m$

$$
\begin{array}{r}
\triangleright 8 \equiv_{5} 3 \text { and } 8=3+5(1) \\
\triangleright 16 \equiv_{5} 1 \text { and } 16=1+5(3)
\end{array}
$$

Proof:

$$
\begin{aligned}
& a \equiv_{m} b \\
& \leftrightarrow m \mid(a-b) \\
& \leftrightarrow \exists k \in \mathbb{Z}: a-b=k m \\
& \leftrightarrow a=b+k m
\end{aligned}
$$

$$
\triangleright \text { by definition }
$$

