Number Theory & Cryptography

- Divisibility and Congruence
- Modular Arithmetic and its Applications
- GCD, (Extended) Euclidean Algorithm, Relative Prime
- The Caesar Cipher and Affine Cipher, Modular Inverse
- The Chinese Remainder Theorem
- Fermat's Little Theorem and Modular Exponentiation
- Private and Public Key Cryptography, The RSA Cryptosystem

Imdad ullah Khan

Arithmetic Rules

Assume arithmetic rules for operations +,*,- on the set of integers

$$a(b+c) = ab+ac$$

- ab = ba
- a(bc) = (ab)c
- a*1 = a
- a * 0 = 0
- a + 0 = a
- a a = 0
- a+1 > a

The divides operator

Definition

For $a, b \in \mathbb{Z}$, $a \neq 0$, we say $a \mid b$: (a divides b) if $\exists c \in \mathbb{Z} : b = ac$

$$\triangleright 12 = 4 \cdot 3$$

■
$$3 \mid 12$$
 $\Rightarrow 12 = 3 \cdot 4$

■
$$5 \mid 0$$
 $\triangleright 0 = 5 \cdot 0$

$$\triangleright 8 = 1 \cdot 8$$

$$\triangleright$$
 6 = $-2 \cdot -3$

$$\triangleright$$
 $-12 = -6 \cdot 2$

- a is a factor or divisor of b
- b is a multiple of a

Divisibility Facts

$$1 \forall n \ 1 \mid n$$

$$\triangleright$$
 $n=1\cdot n$

$$2 \forall n \ n \mid n$$

$$\triangleright$$
 $n = n \cdot 1$

$$\exists \forall n \ n \mid 0$$

$$\triangleright 0 = n \cdot 0$$

$$4 \forall n - 1 \mid n$$

$$\triangleright$$
 $n = -1 \cdot -n$

$$\triangleright$$
 $n = -n \cdot -1$

Divisibility Facts

Theorem

For
$$a, b, c \in \mathbb{Z}$$

$$2 a \mid b \land b \mid c \implies a \mid c$$

$$\exists a \mid b \land a \mid c \implies a \mid b+c$$

Corollary:
$$a \mid b \wedge a \mid c \implies a \mid mb + nc, m, n \in \mathbb{Z}$$

$$\triangleright 2 \mid 4 \land 2 \mid 8 \implies 2 \mid 3 \cdot 8 + 5 \cdot 4$$

Divisibility Facts

Corollary:
$$a \mid b \wedge a \mid c \implies a \mid mb + nc, m, n \in \mathbb{Z}$$

Proof: Number theory proofs generally use definition and basic arithmetic

$$a \mid b \land a \mid c \implies \exists x, y : b = ax \land c = ay$$
 $mb = m(ax) = a(mx) \implies a \mid mb$
 $nc = n(ay) = a(ny) \implies a \mid nc$

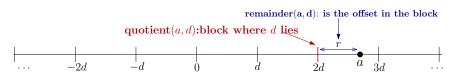
By Theorem part (2) $a \mid mb + nc$

The Division Algorithm

Theorem (The Division Algorithm)

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \le r < d$ such that a = dq + r

- \blacksquare q: quotient(a, d)
- r: remainder(a, d)
- **d**: divisor
- a: dividend



Clearly with a and d > 0, q and r are uniquely defined

D a % d

Congruence

For
$$a, b \in \mathbb{Z}$$
 and $m \in \mathbb{Z}^+$, $a \equiv_m b$ iff $m \mid (a - b)$

pronounced as a is congruent to b modulo m

 \triangleright Standard notation for $a \equiv_m b$ is $a \equiv b \pmod{m}$

Theorem: Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$.

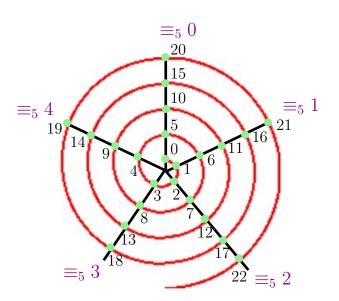
Then $a \equiv_m b$ iff a % m = b % m

$$3 \equiv_3 6$$
, $3 \equiv_3 3$, $7 \equiv_5 2$ $-3 \equiv_5 2$, $-1 \equiv_3 -4$

To avoid confusion between standard notations - \pmod{m} vs **mod** m, we use our notation.

Note that % m is an operator, while \equiv_m is an equivalence relation over $\mathbb Z$

Congruence



Congruence Facts

Fact

- 1 $a \equiv_m a$
- $2 \ a \equiv_m b \iff b \equiv_m a$
- 3 $a \equiv_m b \land b \equiv_m c \implies a \equiv_m c$

 $ho \equiv_m$ is an equivalence relation on $\mathbb Z$

 $a \equiv_m (a \% m)$

Congruence

Theorem

$$a \equiv_m b \iff \exists k \in \mathbb{Z} : a = b + km$$

$$\triangleright$$
 8 \equiv_5 3 and 8 = 3 + 5(1)

$$\triangleright$$
 16 \equiv_5 1 and 16 = 1 + 5(3)

Proof:

$$a \equiv_m b$$

$$\leftrightarrow m|(a-b)$$

$$\leftrightarrow \exists k \in \mathbb{Z} : a - b = km$$

$$\leftrightarrow$$
 $a = b + km$

▷ by definition