Discrete Mathematics

Planar Graphs

- Planar Graphs and Planar Drawings
- Euler's Formula
- Boundaries of Regions
- Degrees of Region
- Face-Edge Handshaking Lemma
- Characterization of Planar Graph

Imdad ullah Khan

Planar Graphs

Is it possible to connect the three houses to the three utilities, such that no connections cross?

Planar Graphs

Planar Graphs

A graph is planar if it can be drawn in the plane without any edge crossing

Is it possible to connect the three houses to the three utilities, such that no connections cross?

Is $K_{3,3}$ planar?

Planar Graphs

A graph is planar if it can be drawn in the plane without any edge crossing

Just because in a drawing of G edges are crossing doesn't mean G is not planar

Four different drawings of the same graph, K_{4}

Planar Graphs

A graph is planar if it can be drawn in the plane without any edge crossing

Just because in a drawing of G edges are crossing doesn't mean G is not planar

Planar Graphs

A graph is planar if it can be drawn in the plane without any edge crossing

To prove planarity, move the vertices around, redraw the edges without crossing (sometimes in a very indirect faction)

Planar Graphs

A graph is planar if it can be drawn in the plane without any edge crossing

To prove planarity, move the vertices around, redraw the edges without crossing (sometimes in a very indirect faction)

Even harder to prove non-planarity

Planar Graphs: A characterization

A graph is planar if it can be drawn in the plane without any edge crossing

We will find some invariants that all planar graphs satisfy

To prove non-planarity of a graph G, we will show that G doesn't satisfy that invariant

Planar Graphs: A characterization

A plane drawing of a planar graph divides plane into regions or faces, one of them the outer face

A region (or face) is a part of the plane disconnected from other parts by the edges of a graph

Planar Graphs: A characterization

A plane drawing of a planar graph divides plane into regions or faces, one of them the outer face

A region (or face) is a part of the plane disconnected from other parts by the edges of a graph

Recall Microsoft Paint fill functionality

Planar Graphs: A characterization

Euler's Formula: The number of faces of a connected planar graph is invariant of its drawing and is given by

$$
f=e-v+2 \quad f=\mid \text { faces }|, \quad e=|E|, \quad v=|V|
$$

Verify it for the following planar graphs

outer face

Planar Graphs: Euler Formula

$$
f=e-v+2 \quad f=\mid \text { faces }|, \quad e=|E|, \quad v=|V|
$$

Add edges of G incident to an existing vertex

1) Take one edge of G
$f-e+v=1-1+2=2$
2) Add edge with one existing vertex

$$
e_{i+1}=e_{i}+1, \quad v_{i+1}=v_{i}+1, \quad f_{i+1}=f_{i}
$$

2) Add edge with two existing vertices

$$
e_{i+1}=e_{i}+1, \quad v_{i+1}=v_{i}, \quad f_{i+1}=f_{i}+1
$$

Planar Graphs: Boundaries of regions

Degree of a region is the number of edges at its boundary
Number of edges encountered in a walk around the boundary of the region

Planar Graphs: Boundaries of regions

Degree of a region is the number of edges at its boundary
Number of edges encountered in a walk around the boundary of the region

Planar Graphs: Boundaries of regions

Degree of a region is the number of edges at its boundary.
Number of edges encountered in a walk around the boundary of the region

Planar Graphs: Boundaries of regions

Degree of a region is the number of edges at its boundary
Number of edges encountered in a walk around the boundary of the region

Degree of each region is at least 3

Planar Graphs: Face-Edge Handshaking

Face-Edge Handshaking Lemma

Let G be a planar graph, let R be its regions, then

$$
2 e=\sum_{F \in R} \operatorname{deg}(F)
$$

$\operatorname{deg}(F) \geq 3 \Longrightarrow 2 e \geq 3 f$
From Euler's formula $\quad f-e+v=2 \Longrightarrow 2 / 3 e-e+v \geq 2$

Theorem

If G is a connected planar graph with $v \geq 3$, then

$$
e \leq 3 v-6
$$

Planar Graphs: Face-Edge Handshaking

Theorem
If G is a connected planar graph with $v \geq 3$, then

$$
e \leq 3 v-6
$$

Show that K_{5} is not planar

Planar Graphs: Face-Edge Handshaking

Theorem

If G is a connected planar graph with $v \geq 3$, then

$$
e \leq 3 v-6
$$

The converse is not true! Consider

Planar Graphs: Characterization

Theorem
If G is a connected planar graph with $v \geq 3$, then

$$
e \leq 3 v-6
$$

Corollary

If G is a connected planar graph, then G has a vertex of degree at most 5

Planar Graphs: Characterization

Theorem

If G is a connected planar graph with $v \geq 3$ and no cycles of length 3 , then

$$
e \leq 2 v-4
$$

Same proof as the above, but use the fact that since no cycle is of length 3 , thus degree of every region is at least 4

Show that $K_{3,3}$ is not planar

Planar Graphs: Characterization

Kuratowski's Theorem
 A graph is nonplanar if and only if it contains a subdivision of $K_{3,3}$ or K_{5}

Coloring Planar Graphs

The Planar-Graph-Coloring(G) problems: Given a planar graph G, color it with minimum colors

Conjecture (1852)

Regions of any 2-d map can be colored with 4 colors so that no neighboring regions have the same color

Conjecture (1852): Any planar graph can be colored with 4 colors

6-Coloring Planar Graphs

Lemma: Every planar graph has a vertex with degree at most 5
Using this lemma we give a recursive 6-coloring algorithm
\triangleright Can apply the algorithm to components of disconnected graphs
Algorithm $6-\operatorname{Color}\left(G, C=\left\{c_{1}, \ldots, c_{6}\right\}\right)$
Let $v \in V$ such that $\operatorname{deg}(v) \leq 5$
$6-\operatorname{Color}\left(G-v, C=\left\{c_{1}, \ldots, c_{6}\right\}\right)$
Let $C^{\prime} \subset C$ be the set of colors used for $N(v)$ $\triangleright\left|C^{\prime}\right| \leq 5$
Color v with a color in $C \backslash C^{\prime}$

Graphs Applications: Coloring

- Kempe (1879) announced a proof
- Tait (1880) announced an alternative proof
- Heawood (1890) found a flaw in Kempe's proof
- Petersen (1881) found a flaw in Tait's proof
- Heesch (1969) reduced the statement to checking a large number of cases
- Appel \& Haken (1976) gave a "proof", that involved a computer program to check 1936 cases (1200 hours of computer time)
- Robertson et.al. (1997) gave another simpler "proof" but still involved computer program

FOUR COLORS SUFFICE

- No human can check all the cases
- What if the program has a bug
- What if the compiler/system hardware has a bug

