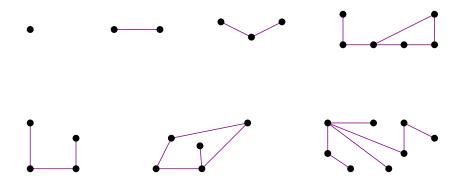
Trees and other Special Classes of Graphs

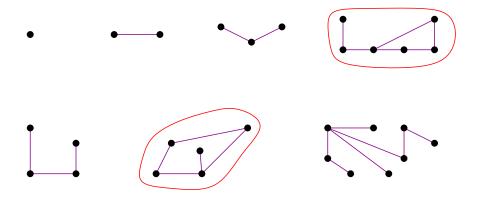
- Special Classes of Graphs
 - Complete Graphs, Path, Cycle, Star, Wheel, n-Cubes
- Bipartite Graphs
- Trees
 - Characterization of Trees
 - Minimum Spanning Tree
 - Rooted Trees

Imdad ullah Khan

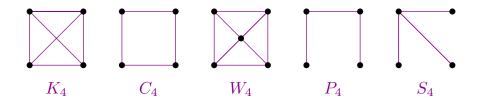
ICP 15-09 Which one of the following is not a tree?

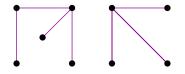


ICP 15-09 Which one of the following is not a tree?



ICP 15-10 Which one of the following is a tree?





ICP 15-11 How many components are there in a forest ?

ICP 15-12 Can a connected component of a forest have cycles ?

ICP 15-13 Each connected component of a forest is a tree. > True/False

Theorem

A graph is a tree if and only if there is a unique path between any two vertices

Proof: G is a tree \implies unique path b/w any u and v

Let u and v have two "different" paths b/w them

Theorem

A graph is a tree if and only if there is a unique path between any two vertices

Proof: G is a tree \implies unique path b/w any u and v

Let u and v have two "different" paths b/w them



This creates a cycle

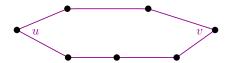
Theorem

A graph is a tree if and only if there is a unique path between any two vertices

Proof: unique path b/w any u and $v \implies G$ is a tree

The graph is connected, as (unique) paths exist

It cannot have cycles. If cycle exists, then



Theorem

A graph is a tree if and only if there is a unique path between any two vertices

Proof: unique path b/w any u and $v \implies G$ is a tree

The graph is connected, as (unique) paths exist

It cannot have cycles. If cycle exists, then

we get at least two paths

Theorem

A graph is a tree if and only if there is a unique path between any two vertices

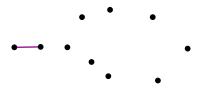
ICP 15-14 Give a formal proof of this theorem.

Theorem

Any tree has at least one leaf

Proof: If there is no leaf i.e. every vertex has degree ≥ 2

Start a walk from any vertex. In each step take an unvisited edge

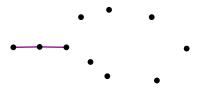


Theorem

Any tree has at least one leaf

Proof: If there is no leaf i.e. every vertex has degree ≥ 2

Start a walk from any vertex. In each step take an unvisited edge

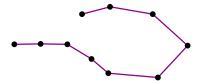


Theorem

Any tree has at least one leaf

Proof: If there is no leaf i.e. every vertex has degree ≥ 2

Start a walk from any vertex. In each step take an unvisited edge



Theorem

Any tree has at least one leaf

Proof: If there is no leaf i.e. every vertex has degree ≥ 2

Start a walk from any vertex. In each step take an unvisited edge

cannot get stuck unless a cycle exists

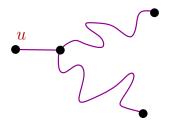
A leaf in a graph is a vertex with degree 1

Any tree has at least one leaf.

Theorem

Any tree on n vertices has n - 1 edges

Inductive Proof: Remove a leaf *u*



A leaf in a graph is a vertex with degree 1

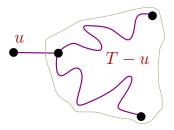
Any tree has at least one leaf.

Theorem

Any tree on n vertices has n - 1 edges

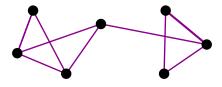
Inductive Proof: Remove a leaf u

- T u is a tree
- T-u has n-2 edges
- So, T has n-1 edges



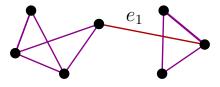
An edge is **cut edge** if removing it disconnects the graph

Recall definition of cut vertices and k-connected graphs



An edge is cut edge if removing it disconnects the graph

Recall definition of cut vertices and k-connected graphs

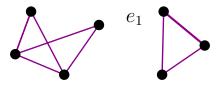


 e_1 is a cut edge

Removing e_1 disconnects the graph

An edge is cut edge if removing it disconnects the graph

Recall definition of cut vertices and k-connected graphs

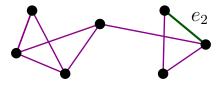


 e_1 is a cut edge

Removing e_1 disconnects the graph

An edge is cut edge if removing it disconnects the graph

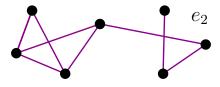
Recall definition of cut vertices and k-connected graphs



 e_2 is not a cut edge

An edge is cut edge if removing it disconnects the graph

Recall definition of cut vertices and k-connected graphs



 e_2 is not a cut edge

Graph is connected even after removing e_2

Definition

A connected graph is 2-edge connected iff it has no cut edge

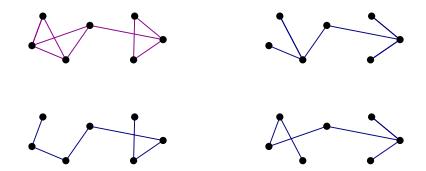
Theorem

An edge is not a cut-edge iff it is on a cycle

A tree is a connected graph with every edge a cut-edge

Spanning Tree

A spanning tree of a graph is a spanning subgraph that is a tree



There can be many spanning trees

Theorem

A graph G is connected iff G has a spanning tree

Proof: T is a spanning tree of $G \implies G$ is connected

- T contains every vertex of G \triangleright T is spanning
- T is connected $\triangleright T$ is a tree

So a path between every u and v exists in T

The same path also exists in G \triangleright $T \subseteq G$

Hence, *G* is connected

Theorem

A graph G is connected iff G has a spanning tree

Proof: G is connected \implies there is a spanning tree T of G

- If G is a tree, we are done
- else G must have cycle
- take one such cycle
- remove an edge from it
- repeat until no cycle left

Remaining graph is acyclic : we deleted all cycles

It is connected, if u, v are connected through a removed edge there was an alternative path

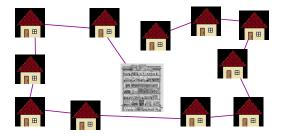
Optimal connection between points

- Layout a telephone network so as every user is connected to all others
- Goal is to use as little wire as possible
- The network should not have any cycle (should be a tree)

Optimal connection between points

- Layout a telephone network so as every user is connected to all others
- Goal is to use as little wire as possible
- The network should not have any cycle (should be a tree)
- Naive approach (star network) may use a lot of wires

Optimal connection between points



- Layout a telephone network so as every user is connected to all others
- Goal is to use as little wire as possible
- The network should not have any cycle (should be a tree)
- Naive approach (star network) may use a lot of wires
- Many possible solutions

Minimum Spanning Tree

- Layout a telephone network so as every user is connected to all others
- Goal is to use as little wire as possible
- In this problem all pairwise connections are possible
- The underlying graph is a complete graph
- Weight of edges are lengths of physical paths between nodes
- There could be restrictions on possible edges (not complete graphs)
- Weight of edges could be arbitrary

Given a weighted graph G = (V, E, c): $c : cost/weight function: <math>c : E \to \mathbb{R}$

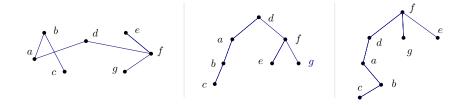
Find a spanning tree, such that its total weight is minimum (among all the spanning trees)

Weight of a tree is the sum of weights of all edges $\sum_{e \in T} c(e)$

Prim's algorithm, Kruskal algorithm

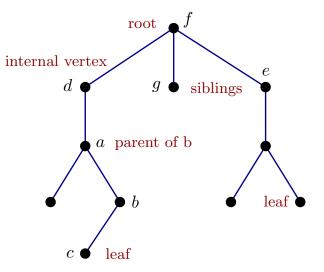
Designate one vertex as root of the tree

Assign direction to each edge away from the root

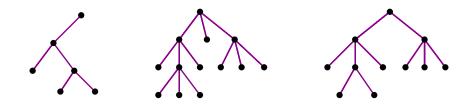


Consider edges as strings of unit lengths connecting balls (vertices) Rooting a tree means pulling one ball (root) up - other balls will hang below Different roots produce different rooted trees

Rooted Tree: Terminology



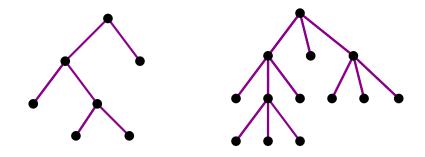
A rooted tree is called an m-ary tree if every internal vertex has no more than m children.



An *m*-ary tree with m = 2 is called a binary tree

m-ary trees

A rooted tree is called a full m-ary tree if every internal vertex has exactly m children



Theorem

A full m-ary tree with k internal vertices has n = mk + 1 vertices

- Proof: Two types of vertices in a tree
- Type-1: Children of someone
- Type-2: Not children of anyone (only root)

Every internal vertex has exactly m children, so total type-1 are mk

m-ary trees

Theorem

A full m-ary tree with

- 1 *n* vertices has i = (n 1)/m internal vertices and $\ell = [(m 1)n + 1]/m$ leaves
- 2 i internal vertices has n = mi + 1 vertices and $\ell = (m 1)i + 1$ leaves

3 ℓ leaves has n = (ml - 1)/(m - 1) vertices and $i = (\ell - 1)/(m - 1)$ internal vertices

Proof: Left as exercise. Please try it yourself, it is in the book

First restate and prove for m = 2, then for general m