Discrete Mathematics

Trees and other Special Classes of Graphs

- Special Classes of Graphs
- Complete Graphs, Path, Cycle, Star, Wheel, n-Cubes

■ Bipartite Graphs
■ Trees

- Characterization of Trees
- Minimum Spanning Tree
- Rooted Trees

Imdad ullah Khan

Bipartite Graphs

A graph $G=(V, E)$ is bipartite if
V can be partitioned into two disjoint non-empty subsets L and R such that no edge in G connects two vertices in L or two vertices in R
\triangleright i.e. all edges are between the parts L and R

Often denoted by $G=(L, R, E)$

Bipartite Graphs

In many applications the problem is modeled with bipartite graphs

- Actors \& Movies
- Artists \& Albums
- Authors \& Papers
- Users \& Online groups
- Words \& Documents
- Users \& Checkins locations

■ Metabolites \& Reactions

Bipartite Graphs

Bipartite graphs are bichromatic
\triangleright Its vertices can be colored with 2 colors

$$
\chi(G)=2
$$

Bipartite Graphs

Bipartite graphs are bichromatic: Its vertices can be colored with 2 colors

$$
\chi(G)=2
$$

Is C_{6} bipartite?

Bipartite Graphs

Bipartite graphs are bichromatic: $\chi(G)=2$

Is C_{6} bipartite?

Bipartite Graphs

Bipartite graphs are bichromatic: $\chi(G)=2$

Is C_{6} bipartite?

Bipartite Graphs

Bipartite graphs are bichromatic: $\chi(G)=2$

Is C_{5} bipartite?

Bipartite Graphs

Bipartite graphs are bichromatic: $\chi(G)=2$

For which n, C_{n} is bipartite?

Bipartite Graphs

ICP 15-07 For which n, C_{n} is bipartite ?
C_{n} is bipartite, when n is even
C_{n} is not bipartite, when n is odd

Theorem

A graph is bipartite if and only if it contains no odd-length cycles

Complete Bipartite Graphs

A graph $G=(V, E)$ is bipartite if

- V can be partitioned into two disjoint non-empty subsets L and R

■ such that no edge in G connects two vertices in L or two vertices in R

- i.e. all edges are between the parts L and R

It is a complete bipartite graph if all possible edges are present
Denoted by $K_{m, n}$

$K_{2,3}$

$K_{3,3}$

$K_{3,4}$

ICP 15-08 How many edges are there in $K_{m, n}$? mn

