Trees and other Special Classes of Graphs

- Special Classes of Graphs
 - Complete Graphs, Path, Cycle, Star, Wheel, n-Cubes
- Bipartite Graphs
- Trees
 - Characterization of Trees
 - Minimum Spanning Tree
 - Rooted Trees

Imdad ullah Khan

Complete Graph

The **complete graph** is a simple graph containing every possible edge K_n : the complete graph on n vertices

Degree of every vertex is n-1

ICP 15-01 How many edges are there in K_n ?

Path Graph

The **path graph**, P_n is a path on *n* vertices

Degree of every vertex is 2 except first and last which are of degree 1

ICP 15-02 How many edges are there in P_n ? n-1

Cycle Graph

The cycle graph, C_n is the a cycle on n vertices

Degree of every vertex is 2

ICP 15-03 How many edges are there in C_n ? *n*

The **wheel**, W_n is obtained from C_n by adding one vertex that is adjacent too all other vertices

Number of vertices in W_n is n+1

Degree of every vertex is 3, except the central one with degree n

ICP 15-04 How many edges are there in W_n ? 2*n*

Star Graph

The star, S_n has one vertex (the center of the star) that is adjacent to all other vertices

Degree of every vertex is 1, except the central one with degree n-1

ICP 15-05 How many edges are there in S_n ? n-1

n-cube

The *n*-cube, Q_n is a graph on 2^n vertices, one for each bit string of length *n*. Two vertices are adjacent iff their bit strings differ by a single bit

Degree of every vertex is n

ICP 15-06 How many edges are there in Q_n ? $n2^{n-1}$