Discrete Mathematics

Trees and other Special Classes of Graphs

- Special Classes of Graphs
- Complete Graphs, Path, Cycle, Star, Wheel, n-Cubes
- Bipartite Graphs

■ Trees

- Characterization of Trees
- Minimum Spanning Tree
- Rooted Trees

Imdad ullah Khan

Complete Graph

The complete graph is a simple graph containing every possible edge K_{n} : the complete graph on n vertices

Degree of every vertex is $n-1$

K_{3}

K_{4}

K_{5}

ICP 15-01 How many edges are there in K_{n} ? $\quad\binom{n}{2}$

Path Graph

The path graph, P_{n} is a path on n vertices

Degree of every vertex is 2 except first and last which are of degree 1

ICP 15-02 How many edges are there in P_{n} ? $n-1$

Cycle Graph

The cycle graph, C_{n} is the a cycle on n vertices
Degree of every vertex is 2

C_{3}

C_{4}

C_{5}

C_{6}

ICP 15-03 How many edges are there in C_{n} ?

Wheel Graph

The wheel, W_{n} is obtained from C_{n} by adding one vertex that is adjacent too all other vertices

Number of vertices in W_{n} is $n+1$
Degree of every vertex is 3 , except the central one with degree n

W_{3}

W_{4}

W_{5}

W_{6}

ICP 15-04 How many edges are there in W_{n} ? $2 n$

Star Graph

The star, S_{n} has one vertex (the center of the star) that is adjacent to all other vertices

Degree of every vertex is 1 , except the central one with degree $n-1$

S_{2}

S_{4}

S_{5}

S_{6}

ICP 15-05 How many edges are there in S_{n} ? $n-1$

n-cube

The n-cube, Q_{n} is a graph on 2^{n} vertices, one for each bit string of length n. Two vertices are adjacent iff their bit strings differ by a single bit

Degree of every vertex is n

ICP 15-06 How many edges are there in Q_{n} ? $n 2^{n-1}$

