Graphs

- Graphs are everywhere
- Types and Terminology: Handshaking lemma
- Representation, Complement, Transpose, Subgraph
- Walks, Paths and Cycles
- (Strongly) Connected and *k*-Connected graphs
- Applications: BFS, DFS, Eulerian graphs
- Advanced Applications: Optimization & Massive Graph Analysis

Imdad ullah Khan

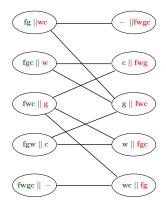
Ferryman wants to transport all 3 objects to the other side

- Boat can carry one object with ferryman
- Wolf cannot be alone with goat
- Goat cannot be alone with cabbage

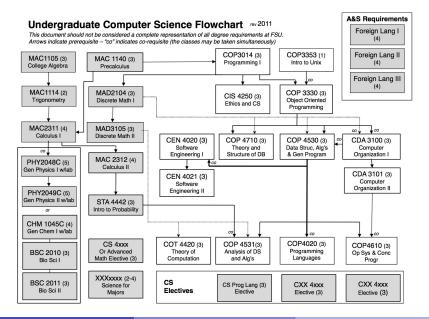
fg ||wc ||fwgc $\operatorname{fgc} || \mathbf{w}$ c || fwg $\mathbf{g} \parallel \mathbf{fwc}$ fwc || g $\mathbf{fgw} \mid\mid \mathbf{c}$ $\mathbf{w} \mid\mid \mathbf{fgc}$ fwgc || - $\mathbf{wc} \mid\mid \mathbf{fg}$

Represent state of objects as vertex *fw* || *gc*

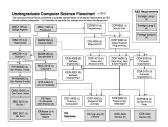
An edge implies possible transition in one trip


fg ||wc ||fwgc $\mathbf{fgc} \mid\mid \mathbf{w}$ c || fwg $\mathbf{g} \parallel \mathbf{fwc}$ fwc || g $\mathbf{fgw} \mid\mid \mathbf{c}$ $\mathbf{w} \mid\mid \mathbf{fgc}$ fwgc || - $\mathbf{wc} \mid\mid \mathbf{fg}$

Represent state of objects as vertex *fw* || *gc*


An edge implies possible transition in one trip

Find a path from one vertex (source) to another (target)


Breadth First Search (BFS) Algorithm accomplishes this

Directed Acyclic Graph: DAG

Directed Acyclic Graph: DAG

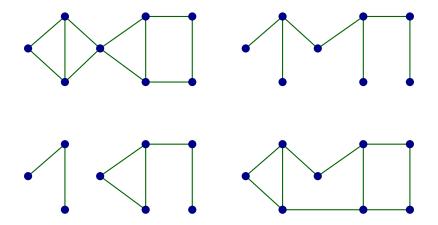
Make a graph: vertices represent courses Directed edges represent pre-requisites Can there by cycle(s) in this graph? **Directed Acyclic Graph: DAG**

What could be a feasible order for a student to take these courses?

Topological sort of V(G): An ordering of vertices with all edges directed from left to right

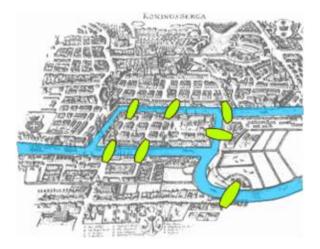
Depth First Search (DFS)

k-Connected Graph

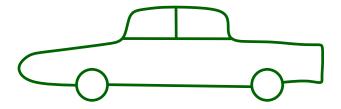

A connected graph is k-connected if it remains connected after removing k-1 vertices

Cut Vertex

A vertex whose removal makes the graph disconnected (or increase the number of connected components)

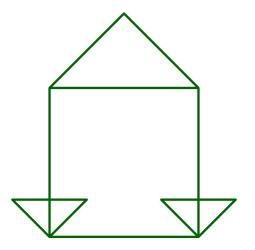

Graph Connectivity

Which one is a good design for a network ?

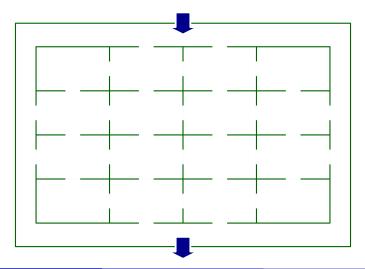


Eulerian Graphs

Tour this city traveling each bridge exactly once



Draw this picture without lifting pencil or retracing

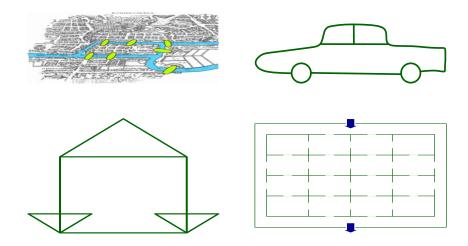


Eulerian Graphs

Draw this picture without lifting pencil or retracing

Tour the building passing each door exactly once

Euler Circuit


A closed walk in G containing every edge of G exactly once

Euler Path

A walk in G containing every edge of G exactly once

Eulerian Graphs

Which graphs has Euler Path/Circuit?

Theorem

G contains an Euler circuit if and only if every vertex has even degree

Theorem

G contains an Euler path if and only if it has exactly two vertices of odd degree

Proofs of these theorems are in your textbook