Graphs

- Graphs are everywhere
- Types and Terminology: Handshaking lemma
- Representation, Complement, Transpose, Subgraph
- Walks, Paths and Cycles
- (Strongly) Connected and *k*-Connected graphs
- Applications: BFS, DFS, Eulerian graphs
- Advanced Applications: Optimization & Massive Graph Analysis

Imdad ullah Khan

Graph Connectivity

Walk

A walk in a digraph is a sequence of vertices

$$v_1, v_2, \ldots, v_k$$

such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k-1$

Just follow successive edges

Length of a Walk

Walk

A walk in a digraph is a sequence of vertices

 v_1, v_2, \ldots, v_k

such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$

Length of a walk is the number of edges in it

Path

A path in a digraph is a sequence of vertices with no repetition

 $v_1, v_2, ..., v_k$

such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$

Length of a Walk

Path

A path in a digraph is a sequence of vertices with no repetition

 v_1, v_2, \ldots, v_k

such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$

Length of a path is the number of edges in it

The shortest walk between u and v is a path

Suppose it is not a path and some vertex r is repeated

The shortest walk between u and v is a path

Suppose it is not a path and some vertex r is repeated

The shortest walk between u and v is a path

Suppose it is not a path and some vertex r is repeated

The path without r - - - r

The shortest walk between u and v is a path

Suppose it is not a path and some vertex r is repeated

The path without r - - - r is shorter!

ICP 14-36 Give a formal proof of this theorem.

Closed Walk

A walk that starts and ends at the same vertex

Closed Walk

A walk that starts and ends at the same vertex

Cycle

A path that starts and ends at the same vertex

Cycle

A path that starts and ends at the same vertex

The shortest closed walk from u to u is a cycle

ICP 14-37 Give a formal proof of this theorem.

Proof is analogous to the proof of shortest walk being a path