Discrete Mathematics

Graphs

- Graphs are everywhere
- Types and Terminology: Handshaking lemma
- Representation, Complement, Transpose, Subgraph

■ Walks, Paths and Cycles
■ (Strongly) Connected and k-Connected graphs

- Applications: BFS, DFS, Eulerian graphs

■ Advanced Applications: Optimization \& Massive Graph Analysis

Imdad ullah Khan

Graph Connectivity

Walk

A walk in a digraph is a sequence of vertices

$$
v_{1}, v_{2}, \ldots, v_{k}
$$

such that $\left(v_{i}, v_{i+1}\right) \in E \quad$ for $\quad 1 \leq i \leq k-1$

Just follow successive edges

Walk

A Walk

Length of a Walk

Walk

A walk in a digraph is a sequence of vertices

$$
v_{1}, v_{2}, \ldots, v_{k}
$$

such that $\left(v_{i}, v_{i+1}\right) \in E \quad$ for $\quad 1 \leq i \leq k-1$

Length of a walk is the number of edges in it

Path

Path

A path in a digraph is a sequence of vertices with no repetition

$$
v_{1}, v_{2}, \ldots, v_{k}
$$

such that $\left(v_{i}, v_{i+1}\right) \in E \quad$ for $\quad 1 \leq i \leq k-1$

Path

A Path

Path

A Path

Length of a Walk

Path

A path in a digraph is a sequence of vertices with no repetition

$$
v_{1}, v_{2}, \ldots, v_{k}
$$

such that $\left(v_{i}, v_{i+1}\right) \in E \quad$ for $\quad 1 \leq i \leq k-1$

Length of a path is the number of edges in it

Shortest Walk

Theorem

The shortest walk between u and v is a path

Suppose it is not a path and some vertex r is repeated

Shortest Walk

Theorem

The shortest walk between u and v is a path

Suppose it is not a path and some vertex r is repeated

Shortest Walk

Theorem

The shortest walk between u and v is a path

Suppose it is not a path and some vertex r is repeated
The path without $r----r$

Shortest Walk

Theorem

The shortest walk between u and v is a path

Suppose it is not a path and some vertex r is repeated
The path without $r----r$ is shorter!

ICP 14-36 Give a formal proof of this theorem.

Closed Walk

Closed Walk

A walk that starts and ends at the same vertex

Closed Walk

Closed Walk

A walk that starts and ends at the same vertex

Cycle

Cycle

A path that starts and ends at the same vertex

Cycle

Cycle

A path that starts and ends at the same vertex

Cycle

Theorem
The shortest closed walk from u to u is a cycle

ICP 14-37 Give a formal proof of this theorem.

Proof is analogous to the proof of shortest walk being a path

