Graphs

- Graphs are everywhere
- Types and Terminology: Handshaking lemma
- Representation, Complement, Transpose, Subgraph
- Walks, Paths and Cycles
- (Strongly) Connected and *k*-Connected graphs
- Applications: BFS, DFS, Eulerian graphs
- Advanced Applications: Optimization & Massive Graph Analysis

Imdad ullah Khan

Graph Representation: Adjacency Matrix

Undirected Simple Graphs

G = (V, E)

V is set of vertices

E is set of edges (unordered pairs (2-subsets) of *V*)

Directed Graphs (digraphs)

G = (V, E)

- \boldsymbol{V} is set of vertices
- E is set of edges

(ordered pairs of V)

Undirected Graph Representation: Adjacency Matrix

Represent undirected G = (V, E) with an **adjacency matrix** A_G

- Fix an arbitrary ordering of V
- One row for each vertex in V
- One column for each vertex in V

$$\mathsf{A}_{ij} = \begin{cases} 1 & if(\mathsf{v}_i, \mathsf{v}_j) \in E \\ 0 & if(\mathsf{v}_i, \mathsf{v}_j) \notin E \end{cases}$$

$$G = \begin{bmatrix} a & b & c & d & e & f & g & h \\ \hline a & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ b & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ c & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ d & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ e & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ f & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ g & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ h & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Α

Undirected Graph Representation: Adjacency Matrix

Let A be the adjacency matrix of a simple graph graph on n vertices.

ICP 14-22 How many entries are there in A?

ICP 14-23 How many 1's are there in A?

ICP 14-24 How many 0's are there in A?

ICP 14-25 What are diagonal entries of *A*?

ICP 14-26 | How many 1's are there in row corresponding to vertex v?

ICP 14-27 How many 1's are there in column corresponding to v?

Directed Graph Representation: Adjacency Matrix

Digraph G = (V, E) is a relation on V

Represent G with an adjacency matrix A_G

- Fix an arbitrary ordering of V
- One row for each vertex in V
- One column for each vertex in V

$$A_{ij} = \begin{cases} 1 & if(v_i, v_j) \in E \\ 0 & if(v_i, v_j) \notin E \end{cases}$$

$$A = \left(\begin{array}{rrrrr} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array}\right)$$

Directed Graph Representation: Adjacency Matrix

Let A be the adjacency matrix of a simple digraph graph on n vertices.

ICP 14-28 How many entries are there in A?

ICP 14-30 How many 0's are there in A?

ICP 14-31 What are diagonal entries of *A*?

ICP 14-32 | How many 1's are there in row corresponding to vertex v?

ICP 14-33 How many 1's are there in column corresponding to v?

Graph Representation: Adjacency List

Represent digraph by listing neighbors of each vertex

Graph Representation: Adjacency List

Represent undirected graph by listing neighbors of each vertex

Weighted Graph Representation

Weighted Adjacency Matrix

	S	А	В	С	D	Е	F	G
S	0	3	0	4	9	0	0	0
А	0	0	4	0	0	0	0	0
В	0	0	0	0	0	6	0	8
C D E G								

Weighted Adjacency Lists

 $G = (V, E), \quad |V| = n, \quad |E| = m$

- Adjacency matrix representation
 - requires n^2 bits
 - Edge query $[(a, b) \in E?]$ requires one memory lookup
- Adjacency list representation
 - requires 2m integers (vertex ids) $\sim 2m \log n$ bits
 - Edge query $[(a, b) \in E?]$ requires list traversal

Usually real-world graphs are very sparse $m = C \cdot n \log n$

▷ So adjacency lists are preferred

For very **dense** graphs adjacency matrix is better

Graph Complement

Graph Complement

$$G = (V, E) \rightarrow \overline{G} = (V, \overline{E})$$

$(u,v)\in\overline{E}$ iff $(u,v)\notin E$

- Vertex set is the same
- Each edge become non-edge and each non-edge becomes edge

▷ (except self-loops)

ICP 14-34 How to compute \overline{G} from adjacency matrix and list of G?

Graph Transpose

Graph Transpose

$$G = (V, E) \rightarrow G^T = (V, E')$$

 \triangleright G is a diagraph

$(u,v) \in E'$ iff $(v,u) \in E$

Vertex set is the same

Direction/orientation of edges are reversed

ICP 14-35 How to compute G^T from adjacency matrix and list of G?

Subgraph

H = (V', E') is a subgraph of G = (V, E), if $V' \subseteq V$ and $E' \subseteq E$

Denoted as $H \subseteq G$

Induced Subgraph

H = (V', E') is a **induced subgraph** of G = (V, E), if $V' \subseteq V$ AND $E' = E|_{V'}$ (all edges in E with both endpoints in V')

An induced subgraph is completely determined by V'

Spanning Subgraph

H = (V', E') is a spanning subgraph of G = (V, E), if V' = V AND $E' \subseteq E$

Denoted as $H \subseteq G$

