Discrete Mathematics

Graphs

- Graphs are everywhere

■ Types and Terminology: Handshaking lemma
■ Representation, Complement, Transpose, Subgraph
■ Walks, Paths and Cycles
■ (Strongly) Connected and k-Connected graphs

- Applications: BFS, DFS, Eulerian graphs

■ Advanced Applications: Optimization \& Massive Graph Analysis

Imdad ullah Khan

Graph Representation: Adjacency Matrix

Undirected Simple Graphs

$G=(V, E)$
V is set of vertices
E is set of edges
(unordered pairs (2-subsets) of V)

Directed Graphs (digraphs)
$G=(V, E)$
V is set of vertices
E is set of edges (ordered pairs of V)

Undirected Graph Representation: Adjacency Matrix

Represent undirected $G=(V, E)$ with an adjacency matrix A_{G}

- Fix an arbitrary ordering of V
- One row for each vertex in V

■ One column for each vertex in V

$$
A_{i j}= \begin{cases}1 & \text { if }\left(v_{i}, v_{j}\right) \in E \\ 0 & i f\left(v_{i}, v_{j}\right) \notin E\end{cases}
$$

$A_{G}=$| | a | b | c | d | e | f | g | h |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| b | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| c | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| d | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| e | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| f | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| g | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| h | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |

Undirected Graph Representation: Adjacency Matrix

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

Let A be the adjacency matrix of a simple graph graph on n vertices.
ICP 14-22 How many entries are there in A ?
ICP 14-23 How many 1 's are there in A ?
ICP 14-24 How many 0's are there in A ?
ICP 14-25 What are diagonal entries of A ?
ICP 14-26 How many 1's are there in row corresponding to vertex v ?
ICP 14-27 How many 1's are there in column corresponding to v ?

Directed Graph Representation: Adjacency Matrix

Digraph $G=(V, E)$ is a relation on V
Represent G with an adjacency matrix A_{G}

- Fix an arbitrary ordering of V
- One row for each vertex in V

■ One column for each vertex in V

$$
A_{i j}= \begin{cases}1 & i f\left(v_{i}, v_{j}\right) \in E \\ 0 & i f\left(v_{i}, v_{j}\right) \notin E\end{cases}
$$

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Directed Graph Representation: Adjacency Matrix

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Let A be the adjacency matrix of a simple digraph graph on n vertices.
ICP 14-28 How many entries are there in A ?
ICP 14-29 How many 1 's are there in A ?
ICP 14-30 How many 0's are there in A ?
ICP 14-31 What are diagonal entries of A ?
ICP 14-32 How many 1 's are there in row corresponding to vertex v ?
ICP 14-33 How many 1's are there in column corresponding to v ?

Graph Representation: Adjacency List

Represent digraph by listing neighbors of each vertex

Graph Representation: Adjacency List

Represent undirected graph by listing neighbors of each vertex

Weighted Graph Representation

Weighted Adjacency Matrix

	S	A	B	C	D	E	F	G
S	0	3	0	4	9	0	0	0
A	0	0	4	0	0	0	0	0
B	0	0	0	0	0	6	0	8
C	\vdots							
D								
E								
F								
G								

Weighted Adjacency Lists

Graph Representation: Tradeoff

$G=(V, E), \quad|V|=n, \quad|E|=m$

- Adjacency matrix representation
- requires n^{2} bits
- Edge query $[(a, b) \in E$?] requires one memory lookup
- Adjacency list representation
- requires $2 m$ integers (vertex ids) $\sim 2 m \log n$ bits
- Edge query $[(a, b) \in E$? $]$ requires list traversal

Usually real-world graphs are very sparse $m=C \cdot n \log n$
\triangleright So adjacency lists are preferred
For very dense graphs adjacency matrix is better

Graph Complement

Graph Complement

$G=(V, E) \rightarrow \bar{G}=(V, \bar{E})$

$$
(u, v) \in \bar{E} \text { iff }(u, v) \notin E
$$

- Vertex set is the same

■ Each edge become non-edge and each non-edge becomes edge
\triangleright (except self-loops)

ICP 14-34 How to compute \bar{G} from adjacency matrix and list of G ?

Graph Transpose

Graph Transpose

$$
G=(V, E) \rightarrow G^{T}=\left(V, E^{\prime}\right) \quad \triangleright G \text { is a diagraph }
$$

$$
(u, v) \in E^{\prime} \text { iff }(v, u) \in E
$$

- Vertex set is the same

■ Direction/orientation of edges are reversed

ICP 14-35 How to compute G^{T} from adjacency matrix and list of G ?

Subgraph

$H=\underline{\left(V^{\prime}, E^{\prime}\right)} \quad$ is a subgraph of $\quad G=\underline{(V, E)}, \quad$ if

$$
V^{\prime} \subseteq V \quad \text { AND } \quad E^{\prime} \subseteq E
$$

Denoted as $H \subseteq G$

G

$H_{1} \subseteq G$

$H_{2} \subseteq G$

Induced Subgraph

$H=\underline{\left(V^{\prime}, E^{\prime}\right)}$ is a induced subgraph of $\quad G=\underline{(V, E)}$, if
$V^{\prime} \subseteq V \quad$ AND $\quad E^{\prime}=\left.E\right|_{V^{\prime}} \quad$ (all edges in E with both endpoints in V^{\prime})

$H_{1} \subseteq G$

$H_{2} \subseteq G$

An induced subgraph is completely determined by V^{\prime}

Spanning Subgraph

$H=\underline{\left(V^{\prime}, E^{\prime}\right)}$ is a spanning subgraph of $\quad G=\underline{(V, E)}, \quad$ if

$$
V^{\prime}=V \quad \text { AND } \quad E^{\prime} \subseteq E
$$

Denoted as $H \subseteq G$

G

$H_{1} \subseteq G$

$H_{2} \subseteq G$

