Discrete Mathematics

Recursive Definition and Recurrence Relations

- Recursive Definition

■ Sequences

- Sets
- Functions
- Algorithms

■ Recurrence Relations
■ Solution of Recurrence Relations

- Proving Closed Form with Induction
- Substitution Method

> Imdad ullah Khan

Solution of Recurrence Relation

Recurrence relation and initial conditions uniquely determine a sequence

A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation

A closed form of a recurrence is a formula that on input n returns nth value of the sequence
\triangleright Called closed form as it does not use previous terms in evaluation

Solving a recurrence relation means finding a closed form for it

Evaluating Recursion without closed form

Recurrence relation for sequence of factorials $\left\{a_{n}\right\}$

$$
a_{n}= \begin{cases}n a_{n-1} & \text { if } n \geq 1 \\ 1 & \text { if } n=0\end{cases}
$$

For a fixed $n, a_{n}=n!$ can be evaluated as follows

$$
\begin{aligned}
& \text { Recurrence Relation: } a_{n}=n a_{n-1} \\
& a_{4}: \\
& a_{3}: \\
& a_{2}: \\
& a_{1}: \\
& a_{0}: \\
& \hline
\end{aligned}
$$

Number of arithmetic operations (multiplications) to evaluate this first order recurrence relation to compute the nth term is n

Solving Recurrence relation

We discuss the following two method to solve a recurrence

1 Make a calculated guess for a closed from and prove it by induction

- A reasonably good closed form can usually be guessed by observing the pattern in the first few terms

■ Can try to disprove a guessed closed form by a single counter example

2 Use the substitution method

Proving Recurrence Closed Form by Induction

$$
H_{n}= \begin{cases}2 H_{n-1}+1 & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

Make a calculated guess for a closed from and prove it by induction

$$
\text { Guess: } \quad H_{n}=2^{n}-1
$$

Proof by induction on n :
Basis Step: $\quad P(1): \quad H_{1}=2^{1}-1=1$
\triangleright hence, true
Inductive Hypothesis: $\quad P(k-1)$ is true i.e. $\quad H_{k-1}=2^{k-1}-1$
Inductive Step: Prove $P(k-1) \rightarrow P(k)$ is true

$$
H_{k}=2\left(H_{k-1}\right)+1=2\left(2^{k-1}-1\right)+1=2^{k}-1
$$

Proving Recurrence Closed Form by Induction

$$
r_{n}= \begin{cases}2 r_{n-1}-r_{n-2} & \text { if } n \geq 2 \\ 3 & \text { if } n=1 \\ 0 & \text { if } n=0\end{cases}
$$

Make a calculated guess for a closed from and prove it by induction

$$
\text { Guess: } \quad r_{n}=3 n
$$

ICP 13-8

■ Check a few initial terms
■ If they are correct, prove by induction

Proving Recurrence Closed Form by Induction

$$
r_{n}= \begin{cases}2 r_{n-1}-r_{n-2} & \text { if } n \geq 2 \\ 5 & \text { if } n=1 \\ 5 & \text { if } n=0\end{cases}
$$

Make a calculated guess for a closed from and prove it by induction

$$
\text { Guess: } \quad r_{n}=5
$$

ICP 13-9

■ Check a few initial terms
■ If they are correct, prove by induction

Note that the recurrence is the same, sequence is different just because initial conditions are different

Proving Recurrence Closed Form by Induction

$$
r_{n}= \begin{cases}2 r_{n-1}-r_{n-2} & \text { if } n \geq 2 \\ 2 & \text { if } n=1 \\ 1 & \text { if } n=0\end{cases}
$$

Make a calculated guess for a closed from and prove it by induction

Guess:
 $$
r_{n}=2^{n}
$$

ICP 13-10

■ Check a few initial terms
■ If they are correct, prove by induction

- $r_{0}=1=2^{0}$
$r_{1}=2=2^{1}$
$r_{2}=2(2)-1=3 \neq 4=2^{2}$

Proving Recurrence Closed Form by Induction

$\left\{t_{n}\right\}=0,1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136$
Make a calculated guess for a closed from and prove it by induction

$$
t_{n}=\left\{\begin{array}{ll}
0 & \text { if } n=0 \\
t_{n}+n & \text { if } n>1
\end{array} \quad\right. \text { Triangular Numbers }
$$

Guess: t_{n}
Basis Step: $\quad P(0): t_{0}=0(0+1) / 2=0 \quad \triangleright$ hence, true
Inductive Hypothesis: $\quad P(k-1)$ is true i.e. $\quad t_{k-1}=(k-1)(k) / 2$
Inductive Step: Prove $P(k-1) \rightarrow P(k)$ is true

$$
t_{k}=t_{k-1}+k=(k-1)(k) / 2+k=k(k+1) / 2
$$

Solving Recurrences using Substitution

$$
H_{n}= \begin{cases}2 H_{n-1}+1 & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

Substitute the value of function until a pattern becomes apparent

$$
\begin{aligned}
H_{n} & =2 H_{n-1}+1 \\
& =2\left(2 H_{n-2}+1\right)+1=2^{2} H_{n-2}+2^{1}+1 \\
& =2^{2}\left(2 H_{n-3}+1\right)+2+1=2^{3} H_{n-3}+2^{2}+2^{1}+1 \\
& =2^{3}\left(2 H_{n-4}+1\right)+2^{2}+2+1=2^{4} H_{n-4}+2^{3}+2^{2}+2^{1}+1 \\
& \vdots \\
& =2^{n-1} H_{1}+2^{n-2}+2^{n-3}+\cdots+2+1 \\
& =2^{n-1}+2^{n-2}+\cdots+2+1=2^{n}-1
\end{aligned}
$$

Solving Recurrences using Substitution

Substitute the value of function until a pattern becomes apparent

$$
\begin{aligned}
T(n) & =T(n / 2)+5 \\
& =(T(n / 4)+5)+5 \\
& =(T(n / 8)+5)+5+5 \\
& =(T(n / 16)+5)+5+5+5
\end{aligned}
$$

$$
T(n)= \begin{cases}T\left(\frac{n}{2}\right)+5 & \text { if } n>1 \\ 5 & \text { if } n=1\end{cases}
$$

$$
=T\left(n / 2^{k}\right)+\underbrace{5+5 \ldots+5}_{k \text { times }}
$$

$$
=T\left(n / 2^{\log n}\right)+\underbrace{5+5+\ldots+5}_{\log n}
$$

$$
=T(1)+5 \log n
$$

$$
=5+5 \log n=5(1+\log n)
$$

Solving Recurrences using Substitution

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
& =2(2 T(n / 4)+n / 2)+n=2 * 2 T(n / 4)+n+n \\
& =2 * 2 * 2 T(n / 8)+n+n+n \\
& =2 * 2 * 2 * 2 T(n / 16)+n+n+n+n \\
T(n)=\left\{\begin{array}{lll}
2 T\left(\frac{n}{2}\right)+n \quad n>1 \\
1 & \text { if } n=1
\end{array}\right. & =\underbrace{2 * 2 * 2 \ldots * 2}_{k} * T\left(n / 2^{k}\right)+\underbrace{n+n+\ldots .+n}_{k} \\
& \vdots \\
& =\underbrace{2 * 2 * 2 \ldots * 2}_{\log n} * T\left(n / 2^{\log n}\right)+\underbrace{n+n+\ldots .+n}_{\log n} \\
& =2^{2 \log n} T(1)+n \log n=n+n \log n
\end{aligned}
$$

Solving Recurrences using Substitution

$$
T(n)= \begin{cases}4 T(n / 2)+3 n & n>1 \\ 1 & n=1\end{cases}
$$

$$
\begin{aligned}
T(n) & =4 T(n / 2)+3 n=4(4 T(n / 4)+3 n / 2)+3 n \\
& =4(4(4 T(n / 8)+3 n / 4)+3 n / 2)+3 n=4 * 4 * 4 T(n / 8)+4 * 43 n / 4+43 n / 2+3 n \\
& \vdots \\
& =\underbrace{4 * 4 * 4 \ldots * 4}_{k} * T\left(n / 2^{k}\right)+\sum_{i=0}^{k-1}\left(4^{i} * 3 n / 2^{i}\right) \\
& \vdots \\
& =\underbrace{4 * 4 * 4 \ldots * 4}_{\log n} * T\left(n / 2^{\log n}\right)+\sum_{i=0}^{\log n-1} 2^{i} * 3 n=4^{\log n} * 1+3 n\left(2^{\log n}\right) \\
& =2^{2 \log n}+3 n * n=n^{2}+3 n^{2}=4 n^{2}
\end{aligned}
$$

