Recursive Definition and Recurrence Relations

- Recursive Definition
 - Sequences
 - Sets
 - Functions
 - Algorithms
- Recurrence Relations
- Solution of Recurrence Relations
 - Proving Closed Form with Induction
 - Substitution Method

Imdad ullah Khan

Recurrence relation and initial conditions uniquely determine a sequence

A sequence is called a **solution** of a recurrence relation if its terms satisfy the recurrence relation

A closed form of a recurrence is a formula that on input n returns nth value of the sequence

▷ Called **closed form** as it does not use previous terms in evaluation

Solving a recurrence relation means finding a closed form for it

Evaluating Recursion without closed form

Recurrence relation for sequence of factorials $\{a_n\}$

$$a_n = \begin{cases} na_{n-1} & \text{if } n \ge 1 \\ 1 & \text{if } n = 0 \end{cases}$$

For a fixed n, $a_n = n!$ can be evaluated as follows

Recurrence Relation: $a_n = na_{n-1}$				
a4:	$4! = 4(3!) \dots = 4(6) = 24$			
a3:	$3! = 3(2!) \dots = 3(2) = 6$			
a ₂ :	$2! = 2(1!) \dots = 2(1) = 2$			
a ₁ :	$1! = 1(0!) \dots = 1(1) = 1$			
a ₀ :	Initial Term: $0! = 1$			

Number of arithmetic operations (multiplications) to evaluate this first order recurrence relation to compute the nth term is n

We discuss the following two method to solve a recurrence

1 Make a calculated guess for a closed from and prove it by induction

- A reasonably good closed form can usually be guessed by observing the pattern in the first few terms
- Can try to disprove a guessed closed form by a single counter example
- **2** Use the substitution method

$$H_n = \begin{cases} 2H_{n-1} + 1 & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$

Make a calculated guess for a closed from and prove it by induction

Guess:
$$H_n = 2^n - 1$$

Proof by induction on *n*:

Basis Step:
$$P(1)$$
: $H_1 = 2^1 - 1 = 1$
Inductive Hypothesis: $P(k-1)$ is true i.e. $H_{k-1} = 2^{k-1} - 1$
Inductive Step: Prove $P(k-1) \rightarrow P(k)$ is true
 $H_k = 2(H_{k-1}) + 1 = 2(2^{k-1} - 1) + 1 = 2^k - 1$

$$r_n = \begin{cases} 2r_{n-1} - r_{n-2} & \text{if } n \ge 2\\ 3 & \text{if } n = 1\\ 0 & \text{if } n = 0 \end{cases}$$

Make a calculated guess for a closed from and prove it by induction

Guess:	$r_n = 3n$	
--------	------------	--

ICP 13-8

- Check a few initial terms
- If they are correct, prove by induction

$$r_n = \begin{cases} 2r_{n-1} - r_{n-2} & \text{if } n \ge 2\\ 5 & \text{if } n = 1\\ 5 & \text{if } n = 0 \end{cases}$$

Make a calculated guess for a closed from and prove it by induction

Guess:	$r_n = 5$		
--------	-----------	--	--

ICP 13-9

- Check a few initial terms
- If they are correct, prove by induction

Note that the recurrence is the same, sequence is different just because initial conditions are different

$$r_n = \begin{cases} 2r_{n-1} - r_{n-2} & \text{if } n \ge 2\\ 2 & \text{if } n = 1\\ 1 & \text{if } n = 0 \end{cases}$$

Make a calculated guess for a closed from and prove it by induction

Guess:	$r_n = 2^n$)
--------	-------------	---

ICP 13-10

- Check a few initial terms
- If they are correct, prove by induction

■
$$r_0 = 1 = 2^0$$
 $r_1 = 2 = 2^1$ $r_2 = 2(2) - 1 = 3 \neq 4 = 2^2$

 $\{t_n\} \ = \ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136$

Make a calculated guess for a closed from and prove it by induction

$$t_{n} = \begin{cases} 0 & \text{if } n = 0\\ t_{n-1} + n & \text{if } n \ge 1 \end{cases}$$
Triangular Numbers
$$t_{n} = \frac{n(n+1)}{2}$$

Proof by induction on *n*:

G

Basis Step: P(0) : $t_0 = 0(0+1)/2 = 0$ Inductive Hypothesis: P(k-1) is true i.e. $t_{k-1} = \frac{(k-1)(k)}{2}$ Inductive Step: Prove $P(k-1) \rightarrow P(k)$ is true $t_k = t_{k-1} + k = \frac{(k-1)(k)}{2} + k = \frac{k(k+1)}{2}$

$$H_n = \begin{cases} 2H_{n-1} + 1 & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$

Substitute the value of function until a pattern becomes apparent

.

$$H_{n} = 2H_{n-1} + 1$$

$$= 2(2H_{n-2} + 1) + 1 = 2^{2}H_{n-2} + 2^{1} + 1$$

$$= 2^{2}(2H_{n-3} + 1) + 2 + 1 = 2^{3}H_{n-3} + 2^{2} + 2^{1} + 1$$

$$= 2^{3}(2H_{n-4} + 1) + 2^{2} + 2 + 1 = 2^{4}H_{n-4} + 2^{3} + 2^{2} + 2^{1} + 1$$

$$\vdots$$

$$= 2^{n-1}H_{1} + 2^{n-2} + 2^{n-3} + \dots + 2 + 1$$

$$= 2^{n-1} + 2^{n-2} + \dots + 2 + 1 = 2^{n} - 1$$

 $T(n) = \begin{cases} T(\frac{n}{2}) + 5 & \text{if } n > 1\\ 5 & \text{if } n = 1 \end{cases}$

Substitute the value of function until a pattern becomes apparent

$$T(n) = T(n/2) + 5$$

= $(T(n/4) + 5) + 5$
= $(T(n/8) + 5) + 5 + 5$
= $(T(n/16) + 5) + 5 + 5 + 5$
:
= $T(n/2^k) + \underbrace{5 + 5 \dots + 5}_{k \text{ times}}$
:
= $T(n/2^{\log n}) + \underbrace{5 + 5 + \dots + 5}_{\log n}$
= $T(1) + 5 \log n$
= $5 + 5 \log n = 5(1 + \log n)$

T(n)

$$T(n) = \begin{cases} 4T(n/2) + 3n & n > 1\\ 1 & n = 1 \end{cases}$$

T(n) = 4T(n/2) + 3n = 4(4T(n/4) + 3n/2) + 3n

: :

: :

= 4(4(4T(n/8) + 3n/4) + 3n/2) + 3n = 4 * 4 * 4T(n/8) + 4 * 43n/4 + 43n/2 + 3n

$$=\underbrace{4*4*4...*4}_{k}*T(n/2^{k})+\sum_{i=0}^{k-1}(4^{i}*3n/2^{i})$$

$$=\underbrace{4*4*4...*4}_{\log n}*T(n/2^{\log n})+\sum_{i=0}^{\log n-1}2^i*3n = 4^{\log n}*1+3n(2^{\log n})$$

$$= 2^{2\log n} + 3n * n = n^2 + 3n^2 = 4n^2$$