Recursive Definition and Recurrence Relations

- Recursive Definition
 - Sequences
 - Sets
 - Functions
 - Algorithms
- Recurrence Relations
- Solution of Recurrence Relations
 - Proving Closed Form with Induction
 - Substitution Method

Imdad ullah Khan

Recurrence relation is an equation that recursively defines a sequence

Useful for modeling and solving many counting problems

- Fibonacci sequence
- Number of bacteria doubling every hour
- Number of moves required to solve the tower of Hanoi puzzle
- Number of operations performed by a (recursive) algorithm

Problem:

A young pair of rabbits (one of each gender) on an island

- A pair of rabbits does not breed until they are 2 months old
- Each pair of rabbits produces another pair each month

▷ Assumption: No rabbits ever die

Find the number of pairs of rabbits in the island after n months

Originally studied by Leonardo Fibonacci, in his book 'Liber abaci' (The Book of Calculation) 13th century

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
	at ta	1	0	1	1

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
	0 to	1	0	1	1
	₽ *\$ 0	2	0	1	1

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
	at ta	1	0	1	1
	0 [*] *0	2	0	1	1
et 19	0 ⁺ 50	3	1	1	2

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
	a* 40	1	0	1	1
	1	2	0	1	1
0 to	₽ * \$	3	1	1	2
0 ⁺ 40		4	1	2	3

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
	et 49	1	0	1	1
	a* *a	2	0	1	1
0 ² 40.	0 [*] 40	3	1	1	2
0 ² 40	<i>a</i> a a a	4	1	2	3
0* 50 0* 50	****	5	2	3	5

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
	0 [*] 40	1	0	1	1
	0 [*] *0	2	0	1	1
0 [*] 40	0 [*] *0	3	1	1	2
0 [*] 40	at to at to	4	1	2	3
0 4 0 A 6	****	5	2	3	5
****	****	6	3	5	8
	at a th				

Let f_n be number of pairs of rabbits in month n

■ f_{n-1} : number of pairs in previous month ■ f_{n-2} : number of new pairs in month *n*, why? ▷ a new pair is from a pair ≥ 2 months old $f_n = \begin{cases} 1 & n = 0 \\ 1 & n = 1 \\ f_{n-1} + f_{n-2} & n \ge 2 \end{cases}$

- A popular puzzle invented by Édouard Lucas in 19th century
- Three pegs mounted on a board together with disks of different sizes
- Initially all disks are placed on peg 1 in increasing order of size
- Move all disks to peg 3 in the same order
 - Rule 1: Can only move one disk at a time
 - Rule 2: Can never place a larger disk over a smaller one

How many moves are required for *n* disks?

1 Transfer the top n-1 disks from Peg 1 to Peg 3 following rules

- **1** Transfer the top n-1 disks from Peg 1 to Peg 3 following rules
- **2** Transfer the largest disk to peg 2

- **1** Transfer the top n 1 disks from Peg 1 to Peg 3 following rules
- **2** Transfer the largest disk to peg 2
- **3** Transfer n-1 disks from peg 3 to peg 2 (place atop the largest disk)

- **1** Transfer the top n 1 disks from Peg 1 to Peg 3 following rules
- 2 Transfer the largest disk to peg 2
- **3** Transfer n 1 disks from peg 3 to peg 2 (place atop the largest disk)

How many moves in total?

- **1** Transfer the top n 1 disks from Peg 1 to Peg 3 following rules
- 2 Transfer the largest disk to peg 2
- **3** Transfer n 1 disks from peg 3 to peg 2 (place atop the largest disk)

 H_n : number of moves performed by the above procedure for *n* disks **ICP 13-1** Write a recurrence relation for H_n ?

- Step 3 takes H_{n-1} moves

Let a_n be the number of bacteria at hour n

ICP 13-2 Write a recurrence relation for a_n ?

$$a_n = \begin{cases} 1 & \text{if } n = 0\\ 2 \times a_{n-1} & \text{if } n > 1 \end{cases}$$

Recursive Algorithms and Recurrences

Runtime of recursive algorithms are usually modeled by recurrences

▷ Closed form formulae for recursive functions (recurrences) proved by induction

Let T(n) be number of comparisons performed by BIN-SEARCH on |A| = n

Each call to the function BIN-SEARCH makes some comparisons

$$T(n) = \begin{cases} 1 & \text{if } n < 1 \\ T(n/2) + 3 & \text{if } n \ge 1 \end{cases}$$

BIN-SEARCH performs at most $2 \log n$ comparisons i.e., $T(n) \leq 2 \log n$

Properties of Recurrence Relations

A linear homogeneous recurrence relation of order k with constant coefficients is of the form

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$

- Linearity: earlier terms a_{n-1},..., a_{n-k} appear as separate terms and to the first power
- Homogeneity: All terms have the same total degree (no constant term)
- Order: The expression for a_n contains the previous k(= order) terms
- Constant coefficient: c_1, c_2, \ldots, c_k are constant (no dependency on n)

A linear homogeneous recurrence relation of order k with constant coefficients is of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

Which of the following recurrences are linear homogeneous with constant coefficients. Write the order of those that are.

ICP 13-3
$$f_n = f_{n-1}^2 + f_{n-2}$$
> not linearICP 13-4 $f_n = 3f_{n-1} - 2f_{n-2} + 7f_{n-3}$ > linear, homogeneous of order 3ICP 13-5 $f_n = 3f_{n-1} + 2f_{n-2} + 7f_{n-3} + 10$ > not homogeneousICP 13-6 $f_n = nf_{n-1}$ > not constant coefficientICP 13-7 $f_n = 2f_{n-2} + 5f_{n-7}$ > linear, homogeneous of order 7

Sequence and its defining recurrence(s)

Consider the following recurrences and their properties

$$a_n = 1 \qquad (order 0)$$

$$a_n = a_{n-1}; a_0 = 1 \qquad (order 1, homogeneous)$$

$$a_n = 2a_{n-1} - 1; a_0 = 1, a_1 = 1 \qquad (order 1, non-homogeneous)$$

$$a_n = 2a_{n-1} - a_{n-2}; a_0 = 1, a_1 = 1 \qquad (order 2, homogeneous)$$

All these recurrences result in the same sequence:

 $1, 1, 1, 1, \cdots$

A recursive sequence may not have a unique recurrence relation

Is the converse true? Is the sequence determined by a recurrence relation (initial terms + rule) unique?