Discrete Mathematics

Recursive Definition and Recurrence Relations

- Recursive Definition
- Sequences
- Sets
- Functions
- Algorithms

■ Recurrence Relations
■ Solution of Recurrence Relations

- Proving Closed Form with Induction
- Substitution Method

Imdad ullah Khan

Recurrence Relations

Recurrence relation is an equation that recursively defines a sequence

Useful for modeling and solving many counting problems

- Fibonacci sequence

■ Number of bacteria doubling every hour
■ Number of moves required to solve the tower of Hanoi puzzle
■ Number of operations performed by a (recursive) algorithm

Fibonacci Numbers

Problem:

A young pair of rabbits (one of each gender) on an island

- A pair of rabbits does not breed until they are 2 months old
- Each pair of rabbits produces another pair each month
\triangleright Assumption: No rabbits ever die

Find the number of pairs of rabbits in the island after n months

Originally studied by Leonardo Fibonacci, in his book 'Liber abaci' (The Book of Calculation) $13^{\text {th }}$ century

Fibonacci Numbers

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
		1	0	1	1

Fibonacci Numbers

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
	n	1	0	1	1
	2	2	0	1	1.

Fibonacci Numbers

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
		1	0	1	1
	$2{ }^{4}{ }^{4} 5$	2	0	1	1
$2{ }^{4}$		3	1	1	2

Fibonacci Numbers

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
	23 \%	1	0	1	1
	2^{4} ¢	2	0	1	1
2 ${ }^{4}$	2 ${ }^{\text {"2 }}$	3	1	1	2
$2^{2}=\frac{6}{5}$		4	1	2	3

Fibonacci Numbers

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
	2-5	1	0	1	1
		2	0	1	1
	$2^{2}+\frac{1}{5}$	3	1	1	2
$22^{\prime \prime}$		4	1	2	3
		5	2	3	5

Fibonacci Numbers

Reproducing pairs （at least two months old）	Young pairs （less than two months old）	Month	Reproducing pairs	Young pairs	Total pairs
		1	0	1	1
	2^{4}＂n	2	0	1	1
$2^{4} 4^{4}$	$2^{4}+\frac{1}{x}$	3	1	1	2
$2^{4}{ }^{4} 5$	$2^{4}{ }^{\prime \prime} 52^{c}{ }^{\prime \prime} 5$	4	1	2	3
$2^{\prime \prime} ⿻ 上^{\prime \prime} 2^{4}$	$2^{*}{ }^{4} 52^{4}{ }^{4} 2^{4} \text { "r }$	5	2	3	5
	$2^{4} ⿻ 丷^{4} 2^{4} x^{4} 2^{4}{ }^{n}{ }^{n}$	6	3	5	8

Let f_{n} be number of pairs of rabbits in month n
－f_{n-1} ：number of pairs in previous month
－f_{n-2} ：number of new pairs in month n ，why？
\triangleright a new pair is from a pair ≥ 2 months old

$$
f_{n}= \begin{cases}1 & n=0 \\ 1 & n=1 \\ f_{n-1}+f_{n-2} & n \geq 2\end{cases}
$$

Tower of Hanoi Puzzle

- A popular puzzle invented by Édouard Lucas in $19^{\text {th }}$ century
- Three pegs mounted on a board together with disks of different sizes

■ Initially all disks are placed on peg 1 in increasing order of size

- Move all disks to peg 3 in the same order

■ Rule 1: Can only move one disk at a time

- Rule 2: Can never place a larger disk over a smaller one

How many moves are required for n disks?

Solving Hanoi Tower Puzzle: Initial State

Peg 1 Peg ?

Peg 3

Initial Configuration

Solving Hanoi Tower Puzzle: Initial State

1 Transfer the top $n-1$ disks from Peg 1 to Peg 3 following rules

Solving Hanoi Tower Puzzle: Initial State

Peg 1
Initial Configuration

1 Transfer the top $n-1$ disks from Peg 1 to Peg 3 following rules
2 Transfer the largest disk to peg 2

Solving Hanoi Tower Puzzle: Initial State

Peg 1

1 Transfer the top $n-1$ disks from Peg 1 to Peg 3 following rules
2 Transfer the largest disk to peg 2
3 Transfer $n-1$ disks from peg 3 to peg 2 (place atop the largest disk)

Solving Hanoi Tower Puzzle: Initial State

Peg 1

1 Transfer the top $n-1$ disks from Peg 1 to Peg 3 following rules
2 Transfer the largest disk to peg 2
3 Transfer $n-1$ disks from peg 3 to peg 2 (place atop the largest disk) How many moves in total?

Solving Hanoi Tower Puzzle: Initial State

1 Transfer the top $n-1$ disks from Peg 1 to Peg 3 following rules
2 Transfer the largest disk to peg 2
3 Transfer $n-1$ disks from peg 3 to peg 2 (place atop the largest disk)
H_{n} : number of moves performed by the above procedure for n disks
ICP 13-1 Write a recurrence relation for H_{n} ?

- Step 1 takes H_{n-1} moves
- Step 2 takes 1 move

$$
H_{n}= \begin{cases}1 & \text { if } n=1 \\ 2 H_{n-1}+1 & \text { if } n>1\end{cases}
$$

- Step 3 takes H_{n-1} moves

Bacteria Doubling Every Hour

Hour: 0
1 cell $a_{0}=2^{0}$ (initial)

Bacteria Doubling Every Hour

Hour: 0
Hour: 1

Bacteria Doubling Every Hour

Hour: 0
Hour: 1

Hour: 2

Bacteria Doubling Every Hour

Bacteria Doubling Every Hour

Bacteria Doubling Every Hour

Let a_{n} be the number of bacteria at hour n
ICP 13-2 Write a recurrence relation for a_{n} ?

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \\ 2 \times a_{n-1} & \text { if } n>1\end{cases}
$$

Recursive Algorithms and Recurrences

Runtime analysis: Find the number of operations performed by algorithm \triangleright This is a measure of the algorithm running time

Runtime of recursive algorithms are usually modeled by recurrences
\triangleright Closed form formulae for recursive functions (recurrences) proved by induction
Let $T(n)$ be number of comparisons performed by BIN-SEARCH on $|A|=n$

Each call to the function BIN-SEARCH makes

- some comparisons

■ a recursive call

$$
T(n)= \begin{cases}1 & \text { if } n<1 \\ T(n / 2)+3 & \text { if } n \geq 1\end{cases}
$$

BIN-SEARCH performs at most $2 \log n$ comparisons i.e., $T(n) \leq 2 \log n$

Properties of Recurrence Relations

A linear homogeneous recurrence relation of order k with constant coefficients is of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

■ Linearity: earlier terms a_{n-1}, \ldots, a_{n-k} appear as separate terms and to the first power

■ Homogeneity: All terms have the same total degree (no constant term)

- Order: The expression for a_{n} contains the previous k (=order) terms
- Constant coefficient: $c_{1}, c_{2}, \ldots, c_{k}$ are constant (no dependency on n)

Properties of Recurrence Relations

A linear homogeneous recurrence relation of order k with constant coefficients is of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

Which of the following recurrences are linear homogeneous with constant coefficients. Write the order of those that are.

ICP 13-3 $f_{n}=f_{n-1}^{2}+f_{n-2}$
\triangleright not linear
ICP 13-4 $f_{n}=3 f_{n-1}-2 f_{n-2}+7 f_{n-3} \triangleright$ linear, homogeneous of order 3
ICP 13-5 $f_{n}=3 f_{n-1}+2 f_{n-2}+7 f_{n-3}+10$
\triangleright not homogeneous
ICP 13-6 $f_{n}=n f_{n-1}$
\triangleright not constant coefficient
ICP 13-7 $f_{n}=2 f_{n-2}+5 f_{n-7} \quad \triangleright$ linear, homogeneous of order 7

Sequence and its defining recurrence(s)

Consider the following recurrences and their properties

- $a_{n}=1$
$\triangleright($ order 0)
- $a_{n}=a_{n-1} ; a_{0}=1$
\triangleright (order 1, homogeneous)
- $a_{n}=2 a_{n-1}-1 ; a_{0}=1$
- $a_{n}=2 a_{n-1}-a_{n-2} ; a_{0}=1, a_{1}=1$
\triangleright (order 1, non-homogeneous)
\triangleright (order 2, homogeneous)

All these recurrences result in the same sequence:

$$
1,1,1,1, \cdots
$$

A recursive sequence may not have a unique recurrence relation

Is the converse true? Is the sequence determined by a recurrence relation (initial terms + rule) unique?

