Discrete Mathematics

Recursive Definition and Recurrence Relations

- Recursive Definition
- Sequences
- Sets
- Functions
- Algorithms

■ Recurrence Relations
■ Solution of Recurrence Relations

- Proving Closed Form with Induction
- Substitution Method

Imdad ullah Khan

Inductive or Recursive Definition

An inductive or recursive definition is just defining things in terms of simpler/smaller version(s) of itself

Explicitly define base case(s) and build upon that

■ Recursively Defined Sequences

- Recursively Defined Sets
- Recursively Defined Functions

■ Recursive Algorithms

Recursively Defined Sequences

$$
\left\{f_{n}\right\}=0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

Fibonacci Numbers

$$
\begin{aligned}
& f_{0}=0 \\
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \quad(n>1)
\end{aligned}
$$

$$
f_{n}= \begin{cases}0 & n=0 \\ 1 & n=1 \\ f_{n-1}+f_{n-2} & n>1\end{cases}
$$

Recursive Definition: Sequence

$$
\left\{t_{n}\right\}=0,1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136
$$

$$
t_{n}= \begin{cases}0 & \text { if } n=0 \\ t_{n-1}+n & \text { if } n \geq 1\end{cases}
$$

Triangular Numbers

Recursive Definition: Sequence

Closed form of recurrence relation and almost every statement about recursively defined structures are usually proved using induction

$$
\left\{f_{n}\right\}=0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

Fibonacci Numbers

$$
\begin{aligned}
& f_{0}=0 \\
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \quad(n>1)
\end{aligned}
$$

$$
f_{n}= \begin{cases}0 & n=0 \\ 1 & n=1 \\ f_{n-1}+f_{n-2} & n>1\end{cases}
$$

Every third number is even

Recursive Definition: Sequence

Theorem

$f_{3 n}$ is even

Basis step $\quad n=0: \quad f_{3 n}=f_{0}=0$ is even
Inductive Hypothesis: Suppose $f_{3(n-1)}$ is even
Inductive Step: Using IH, show that $f_{3 n}$ is even

$$
\begin{aligned}
f_{3 n} & =f_{3 n-1}+f_{3 n-2} \\
& =f_{3 n-2}+f_{3 n-3}+f_{3 n-2} \\
& =2 f_{3 n-2}+f_{3(n-1)}
\end{aligned}
$$

Hence $f_{3 n}$ is even

Recursive Definition: Sets

The set of natural numbers, $\mathbb{N}=\{0,1,2, \ldots\}$

Recursive definition of \mathbb{N}

$10 \in \mathbb{N}$
2 For all $x,[x \in \mathbb{N} \Longrightarrow(x+1) \in \mathbb{N}]$
3 Nothing is in \mathbb{N} unless it satisfies (1) and (2)

Why is condition (3) necessary?
otherwise $\{0, .7,1,1.7,2,2.7,3,3.7, \ldots\}$ could qualify to be called \mathbb{N}

Recursively Defined Functions

Recursive definition of factorial function $n!=n(n-1)(n-2) \ldots(3)(2)(1)$

$$
\begin{array}{ll}
f(n)=n! & f(0)=0!=1 \\
& ■ f(n+1)=(n+1) f(n)=(n+1) n!=(n+1)!
\end{array}
$$

$$
\begin{aligned}
f(n+1) & =(n+1) f(n) \\
& =(n+1)(n) f(n-1) \\
& =(n+1)(n)(n-1) f(n-2) \\
& =(n+1)(n)(n-1)(n-2) f(n-3) \\
& \vdots \quad \vdots \\
& =(n+1)(n)(n-1)(n-2)(n-3) \ldots(3)(2)(1) f(0) \\
& =(n+1)(n)(n-1)(n-2)(n-3) \ldots(3)(2)(1) 1 \\
& =(n+1)!
\end{aligned}
$$

Recursively Defined Functions

Definition of
exponentiation function

$$
a^{n}=\underbrace{a \times a \times \ldots \times a}_{n \text { times }}
$$

A recursive definition of exponentiation

$$
a^{n}= \begin{cases}a * a^{n-1} & \text { if } n>1 \\ a & \text { if } n=1 \\ 1 & \text { if } n=0\end{cases}
$$

Another recursive definition of exponentiation
called repeated squaring

$$
a^{n}= \begin{cases}a^{n / 2} \cdot a^{n / 2} & \text { if } n>1 \text { is even } \\ a \cdot a^{(n-1) / 2} \cdot a^{(n-1) / 2} & \text { if } n \text { is odd } \\ 1 & \text { if } n=0\end{cases}
$$

Recursive Algorithm for Exponentiation

Input: a and $n \geq 0$
Output: a^{n}

$$
a^{n}= \begin{cases}a * a^{n-1} & \text { if } n>1 \\ a & \text { if } n=1 \\ 1 & \text { if } n=0\end{cases}
$$

Algorithm Computing a^{n} using the recursive definition
function REC-EXP (a, n)
if $n=0$ then
return 1
else if $n=1$ then
return a
else
return $a * \operatorname{REC}-\operatorname{EXP}(a, n-1)$

Recursive Algorithm: Repeated Squaring

Input: a and $n \geq 0$
Output: a^{n}

$$
a^{n}= \begin{cases}a^{n / 2} \cdot a^{n / 2} & \text { if } n>1 \text { is even } \\ a \cdot a^{(n-1) / 2} \cdot a^{(n-1) / 2} & \text { if } n \text { is odd } \\ 1 & \text { if } n=0\end{cases}
$$

Algorithm Computing a^{n} using repeated squaring

function REP-SQ-EXP (a, n)
if $n=0$ then
return 1
else if $n>0$ AND n is even then
$z \leftarrow \operatorname{REP}-\operatorname{SQ}-\operatorname{EXP}(a, n / 2)$
return $z * z$
else
$z \leftarrow \operatorname{REP}-\operatorname{SQ}-\operatorname{EXP}(a,(n-1) / 2)$
return $a * z * z$

Recursive Algorithms: Searching in Sorted Array

Input: Sorted array A of n numbers and a number x
Output: Index of x in A if $x \in A$ or -1 if $x \notin A$
\triangleright Notice the input array is sorted
1 Compare $A[$ mid] with x
2 If not equal, eliminate the half where x cannot lie
3 Search x in the remaining half
\triangleright same problem but smaller

Recursive Algorithms: Binary Search

Input: Sorted array A of n numbers and a number x
Output: Index of x in A if $x \in A$ or -1 if $x \notin A$
Algorithm Binary Search for x in sorted array $A[s t, \ldots, e n d]$

```
function \(\operatorname{BIN}-\operatorname{SEARCH}(A, s t, e n d, x)\)
    if end <st then
        return -1
    else
        mid \(\leftarrow \frac{(\text { end }+s t)}{2}\)
        if \(A[\mathrm{mid}]=x\) then
        return mid \(\quad \triangleright\) If found return index
    else if \(A[\) mid \(]>x\) then
        return \(\operatorname{BIN}-\operatorname{SEARCH}(A, s t\), mid \(-1, x)\)
    else
        return \(\operatorname{BIN}-\operatorname{SEARCH}(A\), mid +1 , end,\(x)\)
```


Recursion

Defining a structure in terms of itself!

Google recursion

Web Images Maps Shopping More -

About 4,350,000 results (0.24 seconds)

Did you mean: recursion

Figure: Google gets the joke!

Recursion

Defining a structure in terms of itself!

indentation, paragraph, see paragraph index, 30, 74-76, 150-154, 211-212 \index, 74, 212 curly brace in argument, 75 idx file entry written by, 208 in command argument, 153 space around, 169 special character in argument, 75 too many on page, 143 \indexentry, 75, 212 on idx file, 208 \indexspace, 75 indicator, error, 29, 134 \inf (inf), 44 subscript of. 190 infinite loop, 252 infinitely stretchable length, 100, 102, 215 information, moving, 65-77, 207-209 \infty (∞), 43 ink, rectangular blob of, 106 inproceedings bibliography entry type, 161 input character, 32 file, 12	interrow space in array or tabul 169, 207 in eqnarray euviry in lshortatack, 1 : interword space, 14 , before or after lha_{3} in math mode, 51 produced by invisil too much with \s? without line break, lintextsep, 200 intraword dash, 14, 17 invalid character error invisible character, 12. 32 command, 169 delimiter, 47 environment, 169 term made with leb text, 82,97 liota (t), 41 \isodd, 196 italic type shape, 16,37 in math mode, 51, 15 used for emplasis, 17 liten, 24-25, 34, 184

Figure: Learn infinite loops from this book!

Recursion: Base Case

The programmer got stuck in the shower because the instructions on the shampoo bottle said,

Lather, Rinse, Repeat.

Speaking of Programmers...

Is there a base case for recursive stress?

