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Inductive or Recursive Definition

An inductive or recursive definition is just defining things in terms of
simpler/smaller version(s) of itself

Explicitly define base case(s) and build upon that

Recursively Defined Sequences

Recursively Defined Sets

Recursively Defined Functions

Recursive Algorithms
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Recursively Defined Sequences

{fn} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

Fibonacci Numbers

f0 = 0

f1 = 1

fn = fn−1 + fn−2 (n > 1)

fn =


0 n = 0

1 n = 1

fn−1 + fn−2 n > 1
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Recursive Definition: Sequence

{tn} = 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136

tn =

{
0 if n = 0

tn−1 + n if n ≥ 1

Triangular Numbers

Imdad ullah Khan (LUMS) Recursive Definition & Recurrence Relations 4 / 1



Recursive Definition: Sequence

Closed form of recurrence relation and almost every statement about
recursively defined structures are usually proved using induction

{fn} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

Fibonacci Numbers

f0 = 0

f1 = 1

fn = fn−1 + fn−2 (n > 1)
fn =


0 n = 0

1 n = 1

fn−1 + fn−2 n > 1

Every third number is even
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Recursive Definition: Sequence

Theorem

f3n is even

Basis step n = 0: f3n = f0 = 0 is even

Inductive Hypothesis: Suppose f3(n−1) is even

Inductive Step: Using IH, show that f3n is even

f3n = f3n−1 + f3n−2

= f3n−2 + f3n−3 + f3n−2

= 2f3n−2 + f3(n−1)

Hence f3n is even
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Recursive Definition: Sets

The set of natural numbers, N = {0, 1, 2, . . .}

Recursive definition of N
1 0 ∈ N
2 For all x , [x ∈ N =⇒ (x + 1) ∈ N]
3 Nothing is in N unless it satisfies (1) and (2)

Why is condition (3) necessary?

otherwise {0, .7, 1, 1.7, 2, 2.7, 3, 3.7, . . .} could qualify to be called N
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Recursively Defined Functions

Recursive definition of factorial function n! = n(n − 1)(n − 2) . . . (3)(2)(1)

f (n) = n! f (0) = 0! = 1

f (n + 1) = (n + 1)f (n) = (n + 1)n! = (n + 1)!

f (n + 1) = (n + 1)f (n)

= (n + 1)(n)f (n − 1)

= (n + 1)(n)(n − 1)f (n − 2)

= (n + 1)(n)(n − 1)(n − 2)f (n − 3)

...
...

= (n + 1)(n)(n − 1)(n − 2)(n − 3) . . . (3)(2)(1)f (0)

= (n + 1)(n)(n − 1)(n − 2)(n − 3) . . . (3)(2)(1)1

= (n + 1)!
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Recursively Defined Functions

Definition of
exponentiation function

an = a× a× . . .× a︸ ︷︷ ︸
n times

A recursive definition of
exponentiation an =


a ∗ an−1 if n > 1

a if n = 1

1 if n = 0

Another recursive
definition of
exponentiation
called repeated squaring

an =


an/2 · an/2 if n > 1 is even

a · a(n−1)/2 · a(n−1)/2 if n is odd

1 if n = 0
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Recursive Algorithm for Exponentiation

Input: a and n ≥ 0
Output: an an =


a ∗ an−1 if n > 1

a if n = 1

1 if n = 0

Algorithm Computing an using the recursive definition

function rec-exp(a,n)

if n = 0 then

return 1

else if n = 1 then

return a

else
return a ∗ rec-exp(a, n − 1)
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Recursive Algorithm: Repeated Squaring

Input: a and n ≥ 0
Output: an an =


an/2 · an/2 if n > 1 is even

a · a(n−1)/2 · a(n−1)/2 if n is odd

1 if n = 0

Algorithm Computing an using repeated squaring

function rep-sq-exp(a,n)

if n = 0 then
return 1

else if n > 0 and n is even then

z ← rep-sq-exp(a, n/2)

return z ∗ z
else
z ← rep-sq-exp(a, (n−1)/2)

return a ∗ z ∗ z
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Recursive Algorithms: Searching in Sorted Array

Input: Sorted array A of n numbers and a number x

Output: Index of x in A if x ∈ A or −1 if x /∈ A

▷ Notice the input array is sorted

1 Compare A[mid ] with x

2 If not equal, eliminate the half where x cannot lie

3 Search x in the remaining half ▷ same problem but smaller

8A =

bin-search(A[1, n], x)

if(A[mid] < x)if(A[mid] > x)

bin-search(A[1,mid], x) bin-search(A[mid+ 1, n], x)

12 17 18 23 39

12 17 18 23 39

−2 2 3 4 6

−2 2 3 4 6

A[mid]=x
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Recursive Algorithms: Binary Search

Input: Sorted array A of n numbers and a number x

Output: Index of x in A if x ∈ A or −1 if x /∈ A

Algorithm Binary Search for x in sorted array A[st, . . . , end ]

function bin-search(A,st,end ,x)

if end < st then

return −1
else

mid ← (end + st)

2
if A[mid ] = x then

return mid ▷ If found return index

else if A[mid ] > x then

return bin-search(A, st,mid − 1, x)
else

return bin-search(A,mid + 1, end , x)

Imdad ullah Khan (LUMS) Recursive Definition & Recurrence Relations 13 / 1



Recursion

Defining a structure in terms of itself!

Figure: Google gets the joke!
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Recursion

Defining a structure in terms of itself!

Figure: Learn infinite loops from this book!
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Recursion: Base Case

Imdad ullah Khan (LUMS) Recursive Definition & Recurrence Relations 16 / 1



Speaking of Programmers...
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Is there a base case for recursive stress?
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