Discrete Mathematics

Binomial Theorem and Pascal Triangle

- The Binomial Theorem
- The Pascal Triangle
- Patterns in the Pascal Triangle $(\bmod n)$

Imdad ullah Khan

The Pascal Identity

The Pascal Identity

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Combinatorial Proof:

Counting Task:
 Select k-subset of an n-set

■ LHS counts the number of k-subsets of an n-set

- Fix an element x in the n-set. RHS counts two types of k-subsets.

Those $\underbrace{\text { containing the element } x}_{\binom{n-1}{k-1}}$ and $\underbrace{\text { those not containing } x}_{\binom{n-1}{k}}$

The Binomial Theorem

We know these "formulae"

$$
\begin{array}{lc}
(1+x)^{0}= & 1 \\
(1+x)^{1}= & 1+1 x \\
(1+x)^{2}= & 1+2 x+1 x^{2} \\
(1+x)^{3}= & 1+3 x+3 x^{2}+1 x^{3} \\
(1+x)^{4}= & 1+4 x+6 x^{2}+4 x^{3}+1 x^{4} \\
(1+x)^{5}= & 1+5 x+10 x^{2}+10 x^{3}+5 x^{4}+1 x^{5} \\
(1+x)^{6}= & 1+6 x+15 x^{2}+20 x^{3}+15 x^{4}+6 x^{5}+1 x^{6}
\end{array}
$$

Focus on the coefficients in these expressions

The Binomial Theorem

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x+y)^{2}=(x+y)(x+y)
\end{aligned}
$$

Make all possible products of one term each in the first and second factor
Each term has form $x^{k} y^{2-k}$
\triangleright total degree of a term in $(x+y)^{2}$ is 2

$$
(x+y)^{2}=x \cdot x+x \cdot y+y \cdot x+y \cdot y
$$

Sum the identical terms

The Binomial Theorem

$$
\begin{aligned}
& (x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
& (x+y)^{3}=(x+y)(x+y)(x+y)
\end{aligned}
$$

Each term has form $x^{k} y^{3-k}$
\triangleright total degree of a term in $(x+y)^{3}$ is 3
$(x+y)^{3}=x x x+x x y+x y x+x y y+y x x+y x y+y y x+y y y$
$x^{3} \quad:$ number of ways to choose 3 factors for x is: $1=\binom{3}{3}$
$x^{2} y \quad:$ number of ways to choose 2 factors for x is: $3=\binom{3}{2}$
$x y^{2}$: number of ways to choose 1 factors for x is: $3=\binom{3}{1}$
$y^{3} \quad:$ number of ways to choose 0 factors for x is: $1=\binom{3}{0}$

The Binomial Theorem

$$
(x+y)^{n}=\underbrace{(x+y)(x+y) \ldots(x+y)}_{n \text { factors }}
$$

Each term has form $x^{k} y^{n-k}$
\triangleright total degree of a term in $(x+y)^{n}$ is n

For $\quad 0 \leq k \leq n \quad$ coefficient of $x^{k} y^{n-k}$ is $\binom{n}{k}$

The Binomial Theorem

The Binomial Theorem

$$
\begin{aligned}
& (x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} \\
& =\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n}
\end{aligned}
$$

This is why $\binom{n}{k}$ is called the binomial coefficient

The Binomial Theorem

The Binomial Theorem

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

We can prove many theorems using the binomial theorem

The Binomial Theorem

The number of subsets of an n-element set is 2^{n}

By sum rule, the number of subsets $=\sum_{k=0}^{n}\binom{n}{k}$
The Binomial Theorem

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

Substitute $x=1$ in the binomial formula

$$
2^{n}=(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} 1^{k}
$$

The Binomial Theorem

The number of even-sized subsets of a set is equal to the number of odd-sized subsets

$$
\text { Equivalently, } \quad \sum_{\substack{k=0 \\ k \text { odd }}}^{n}\binom{n}{k}=\sum_{\substack{k=0 \\ k \text { even }}}^{n}\binom{n}{k}
$$

Substitute $x=-1$ in the binomial formula

$$
0=(1-1)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}=\sum_{\substack{k=0 \\ k \text { odd }}}^{n}-\binom{n}{k}+\sum_{\substack{k=0 \\ k \text { even }}}^{n}\binom{n}{k}
$$

