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The Binomial Theorem

The Pascal Triangle

Patterns in the Pascal Triangle (mod n)
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The Pascal Identity

The Pascal Identity (
n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)

Combinatorial Proof:

Counting Task: Select k-subset of an n-set

LHS counts the number of k-subsets of an n-set

Fix an element x in the n-set. RHS counts two types of k-subsets.

Those containing the element x︸ ︷︷ ︸
(n−1
k−1)

and those not containing x︸ ︷︷ ︸
(n−1

k )
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The Binomial Theorem

We know these “formulae”

(1 + x)0 =

(1 + x)1 =

(1 + x)2 =

(1 + x)3 =

(1 + x)4 =

(1 + x)5 =

(1 + x)6 =

1

1 + 1x

1 + 2x + 1x2

1 + 3x + 3x2 + 1x3

1 + 4x + 6x2 + 4x3 + 1x4

1 + 5x + 10x2 + 10x3 + 5x4 + 1x5

1 + 6x + 15x2 + 20x3 + 15x4 + 6x5 + 1x6

Focus on the coefficients in these expressions
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The Binomial Theorem

(x + y)2 = x2 + 2xy + y2

(x + y)2 = (x + y)(x + y)

Make all possible products of one term each in the first and second factor

Each term has form xky 2−k

▷ total degree of a term in (x + y)2 is 2

(x + y)2 = x · x + x · y + y · x + y · y

Sum the identical terms
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The Binomial Theorem

(x + y)3 = x3 + 3x2y + 3xy2 + y3

(x + y)3 = (x + y)(x + y)(x + y)

Each term has form xky 3−k

▷ total degree of a term in (x + y)3 is 3

(x + y)3 = xxx + xxy + xyx + xyy + yxx + yxy + yyx + yyy

x3 : number of ways to choose 3 factors for x is : 1 =
(3
3

)
x2y : number of ways to choose 2 factors for x is : 3 =

(3
2

)
xy2 : number of ways to choose 1 factors for x is : 3 =

(3
1

)
y3 : number of ways to choose 0 factors for x is : 1 =

(3
0

)
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The Binomial Theorem

(x + y)n = (x + y)(x + y) . . . (x + y)︸ ︷︷ ︸
n factors

Each term has form xky n−k

▷ total degree of a term in (x + y)n is n

For 0 ≤ k ≤ n coefficient of xkyn−k is

(
n

k

)
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The Binomial Theorem

The Binomial Theorem

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk

=

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n − 1

)
xyn−1 +

(
n

n

)
yn

This is why
(
n
k

)
is called the binomial coefficient
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The Binomial Theorem

The Binomial Theorem

(1 + x)n =
n∑

k=0

(
n

k

)
xk

We can prove many theorems using the binomial theorem
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The Binomial Theorem

The number of subsets of an n-element set is 2n

By sum rule, the number of subsets =
n∑

k=0

(n
k

)
The Binomial Theorem

(1 + x)n =
n∑

k=0

(
n

k

)
xk

Substitute x = 1 in the binomial formula

2n = (1 + 1)n =
n∑

k=0

(
n

k

)
1k
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The Binomial Theorem

The number of even-sized subsets of a set is equal to the number of
odd-sized subsets

Equivalently,
n∑

k=0
k odd

(
n

k

)
=

n∑
k=0
k even

(
n

k

)

Substitute x = −1 in the binomial formula

0 = (1− 1)n =
n∑

k=0

(
n

k

)
(−1)k =

n∑
k=0
k odd

−
(
n

k

)
+

n∑
k=0
k even

(
n

k

)
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