Discrete Mathematics

Counting

- Introduction and Applications
- Sum and Product Rule
- The Complement Rule
- Inclusion-Exclusion Principle
- The Pigeon-Hole Principle
- Permutations and Combinations
- Combinatorial Proofs
- Permutation and Combinations with Repetitions

Imdad ullah Khan

Permutation

A permutation or arrangement of n objects is an ordering of the objects

The number of permutations of n objects is n !

An r-permutation is an ordering or arrangement of r out of n objects

The number of r-permutations of n objects is

$$
n(n-1)(n-2) \cdots(n-(r-1))
$$

Permutations with repetition

How many r-permutations with repetitions from n objects are there?

We discussed it earlier in detail
■ How many 5-digits postal codes are there?
■ How many different license plates can be made?

- How many strings of length r can be formed from the uppercase letters of the English alphabet?

Think of filing r boxes experiment and apply the product rule

The number of r-permutations from n objects with repetition is n^{r}

Combinations

An r-combination is a (unordered) subset of size r of n objects

The number of r-combinations of n objects is

$$
\frac{P(n, r)}{r!}=\frac{n!}{(n-r)!r!}=\binom{n}{r}
$$

$\binom{n}{r}$: n choose r (binomial coefficient)
(the number of r-subsets of an n-element set)

Combinations with repetition

How many ways are there to select 4 pieces of fruits from a bowl of apples (A), oranges (O), and pears (P) ?

Given:

- order of pieces selection does not matter
- only the type and not the individual pieces matters
- there are at least four pieces of each type of fruit (unlimited)

Combinations with repetition

How many ways are there to select 4 pieces of fruits from a bowl of apples (A), oranges (O), and pears (P) ? Given:

- order of pieces selection does not matter
- only the type and not the individual pieces matters
\triangleright identical
- there are at least four pieces of each type of fruit (unlimited)

Number of 4-combinations with repetition from 3-element (multi)set $=15$

- $\{A, A, A, A\}$
- $\{O, O, O, O\}$
- $\{P, P, P, P\}$
- $\{A, A, A, O\}$
- $\{A, A, A, P\}$
- $\{O, O, O, A\}$
- $\{O, O, O, P\}$
- $\{P, P, P, A\}$
- $\{P, P, P, O\}$
- $\{A, A, O, O\}$
- $\{A, A, P, P\}$
- $\{O, O, P, P\}$
- $\{A, A, O, P\}$
- $\{O, O, A, P\}$
- $\{P, P, A, O\}$

Combinations with repetition

Cash Box with Seven Types of Bills.

How many ways are there to select 5 bills from a cashbox of $\$ 1, \$ 2, \$ 5$, $\$ 10, \$ 20, \$ 50$, and $\$ 100$ bills? Given:

- order of chosen bills does not matter
- only the type and not the individual bill matters
- there are at least five bills of each type

Combinations with repetition

Represent the selection of 5 bills as an arrangement of $5 *$'s and $6 \mid$'s

Examples of Ways to Select Five Bills.

Combinations with repetition

Represent the selection of 5 bills as an arrangement of $5 *$'s and $6 \mid$'s

- denotes a separator of the cashbox separating the types of bills. 6 separators to represent 7 types of bills

■ * denotes a bill. * between two separators represents the selected number of bills of the type
select 5 bills \Longrightarrow arrange $6 \mid$ and $5 *$ in a row with a total of 11 positions
\therefore number of ways to select the 5 bills $=$ number of ways to select the positions of the 5 stars from the 11 positions
\Longrightarrow Solution: num of unordered selections of 5 objects from a set of 11

$$
=\binom{11}{5}=\frac{11!}{5!6!}=462
$$

Combinations with repetition

There are $\binom{n+r-1}{r}=\binom{n+r-1}{n-1} r$-combinations from a set with n elements when repetitions of elements are allowed

Suppose that a cookie shop has 4 different kinds of cookies. In how many different ways can 6 cookies be chosen? (similar assumptions as above)

Solution:

number of 6-combinations of a set with 4 elements.
From above rule this equals:

$$
\binom{4+6-1}{6}=\binom{9}{6}=84
$$

Combinations with repetition

ICP 11-30

How many non-negative integral solutions are there for the equation

$$
x+y+z=100
$$

Choose $100 *$ from a multiset of $\quad *, *, *$

