Discrete Mathematics

Counting

- Introduction and Applications
- Sum and Product Rule
- The Complement Rule
- Inclusion-Exclusion Principle
- The Pigeon-Hole Principle
- Permutations and Combinations
- Combinatorial Proofs
- Permutation and Combinations with Repetitions

Imdad ullah Khan

Binomial Identities: Algebraic Proof

ICP 11-27 Prove that

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Algebraic Proof:

$$
\binom{n}{n-k}=\frac{n!}{(n-(n-k))!(n-k)!}=\frac{n!}{k!(n-k)!}=\binom{n}{k}
$$

Binomial Identities: Combinatorial Proof

Show that both sides of the identity count the same objects

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Combinatorial Proof:

Counting Task: Select k-subset of an n-set

■ LHS counts the number of ways to select k objects out of n
■ RHS counts the number of ways to reject $n-k$ objects out of n
Both count the number of ways to partition n objects into k selected and $n-k$ rejected objects

Binomial Identities: Algebraic Proof

ICP 11-28 Prove that

$$
k\binom{n}{k}=n\binom{n-1}{k-1}
$$

Algebraic Proof:

$$
\begin{aligned}
k\binom{n}{k} & =\frac{k \cdot n!}{(n-k)!k!}=\frac{n!}{(n-k)!(k-1)!} \\
& =\frac{n \cdot(n-1)!}{((n-1)-(k-1))!(k-1)!}=n\binom{n-1}{k-1}
\end{aligned}
$$

Binomial Identities: Combinatorial Proof

Show that both sides of the identity count the same objects

$$
k\binom{n}{k}=n\binom{n-1}{k-1} \Longrightarrow\binom{k}{1}\binom{n}{k}=\binom{n}{1}\binom{n-1}{k-1}
$$

Combinatorial Proof:
Counting Task: Select k players out of n players and a captain

■ LHS: Select k players and among them select a captain

- RHS: Select a captain and from remaining select $k-1$ players

Both count number of ways to select team with captain

Binomial Identities: Algebraic Proof

ICP 11-29 Prove that

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Algebraic Proof:

$$
\begin{aligned}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{(n-1-k)!k!}+\frac{(n-1)!}{(n-k)!(k-1)!} \\
& =\frac{(n-k)(n-1)!+(k)(n-1)!}{(n-k)!(k)!} \\
& =\frac{(n)!}{(n-k)!(k)!}=\binom{n}{k}
\end{aligned}
$$

Binomial Identities: Combinatorial Proof

Show that both sides of the identity count the same objects

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Combinatorial Proof:

Counting Task: Select k-subset of an n-set

■ LHS counts the number of k-subsets of an n-set
■ Fix an element x in the n-set. RHS counts two types of k-subsets.
Those $\underbrace{\text { containing the element } x}_{\binom{n-1}{k-1}}$ and $\underbrace{\text { those not containing } x}_{\binom{n-1}{k}}$

Pascal Identity

This last identity is called the Pascal Identity, we will discuss it in detail

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

