Discrete Mathematics

Counting

- Introduction and Applications
- Sum and Product Rule
- The Complement Rule
- Inclusion-Exclusion Principle
- The Pigeon-Hole Principle
- Permutations and Combinations
- Combinatorial Proofs
- Permutation and Combinations with Repetitions

Imdad ullah Khan

Permutation

How many ways to arrange the letters A, B, C, and D ?

$$
4 \times 3 \times 2 \times 1
$$

How many 5 digits codes are there with no repetition ?

$$
10 \times 9 \times 8 \times 7 \times 6
$$

How many ways to arrange n letters ?

$$
n \times(n-1) \times(n-2) \times \cdots \cdots \cdots \times 3 \times 2 \times 1
$$

How many r digits codes are there with no repetition from n characters ?

$$
n \times(n-1) \times(n-2) \times \cdots \times(n-(r-1))
$$

Permutation

A permutation or arrangement of n objects is an ordering of the objects

The number of permutations of n objects is n !

An r-permutation is an ordering or arrangement of r out of n objects

The number of r-permutations of n objects is

$$
n(n-1)(n-2) \cdots(n-(r-1))
$$

Permutation

$P(n, r)$: Number of r-permutation of n objects
Number of ways to permute, order or arrange r out of n objects

$$
P(n, r)=n(n-1)(n-2) \cdots(n-(r-1))
$$

$$
=\frac{n!}{(n-r)!}
$$

Ordered Versus Unordered

I have 5 students, $\{A, B, C, D, E\}$ and I give the prizes $\$ 500$ and $\$ 300$ to two students.

How many choices do I have?

Order of selection matters here, A, B is different than B, A
$P(5,2)$

Ordered Versus Unordered

I have 5 students, $\{A, B, C, D, E\}$ and I give the grade A to two students. How many choices do I have?

Order of selection does not matter, A, B is the same as B, A
$\{A, B\} \quad A B, B A \quad$ Number of 2 letter arrangements from
$\{A, C\} \quad A C, C A \quad\{A, B, C, D, E\}$
$\{A, D\} \quad A D, D A$
$\{A, E\} \quad A E, E A$
$\{B, C\} \quad B C, C B$
$\{B, D\} \quad B D, D B$
But these are ordered pairs
$\{B, E\} \quad B E, E B$
$\{C, D\} \quad C D, D C$
$\{C, E\} \quad C E, E C$
$\{D, E\} \quad D E, E D$

$$
P(5,2)=\frac{5!}{3!}=20
$$

Each unordered pair is listed twice
Each unordered pair is listed 2! times

Ordered Versus Unordered

ICP 11-24 How many subsets of size 5 are there for the set
$\{0,1,2,3,4,5,6,7,8,9\}$?

Number of ordered 5 length sequences that can be formed from $\{0,1,2,3,4,5,6,7,8,9\}$

$$
P(10,5)=\frac{10!}{(10-5)!}=30240
$$

Number of arrangements/ordering of 5 digits is

$$
P(5,5)=5!=120
$$

Each subset is counted 120 times. Number of (unordered) subsets

$$
\frac{P(10,5)}{5!}=\frac{10!}{(10-5)!5!}=\frac{30240}{120}=252
$$

Combinations

An r-combination is a (unordered) subset of size r of n objects

The number of r-combinations of n objects is

$$
\frac{P(n, r)}{r!}=\frac{n!}{(n-r)!r!}=\binom{n}{r}
$$

$\binom{n}{r}$: n choose r (binomial coefficient)
(the number of r-subsets of an n-element set)

Combinations

Number of r-combinations of n objects is $\quad\binom{n}{r}=\frac{n!}{(n-r)!r!}$

Number of 0-subsets of $\{a, b, c, d\}=\binom{4}{0}=\frac{4!}{(4-0)!0!}=1$
Number of 1-subsets of $\{a, b, c, d\}=\binom{4}{1}=\frac{4!}{(4-1)!1!}=4$
Number of 2-subsets of $\{a, b, c, d\}=\binom{4}{2}=\frac{4!}{(4-2)!2!}=6$
Number of 3-subsets of $\{a, b, c, d\}=\binom{4}{3}=\frac{4!}{(4-3)!3!}=4$
Number of 4-subsets of $\{a, b, c, d\}=\binom{4}{4}=\frac{4!}{(4-4)!4!}=1$

Combinations

ICP 11-25 How many 3-bit sequences with two 0's and one 1

- 3 possible positions to put the first 0
- 2 remaining positions to put the second 0
- 1 remaining to put the 1

$$
\begin{gathered}
3 \times 2 \times 1 \\
001,010,100
\end{gathered}
$$

Choose the 2 positions for 0 's and the 1 is forced

$$
\binom{3}{2}=3
$$

Combinations

ICP 11-26 How many 7-bit sequences with 30 's and 4 1's

Choose 3 positions for 0 's and the 1 's are forced

$$
\binom{7}{3}
$$

Equivalently,
Choose 4 positions for 1 's and the 0 's are forced

$$
\binom{7}{4}
$$

Counting with Combinations

Poker: 52 Card Deck, 5 card hands

4 possible suits:
13 possible values:

- Pair: set of two cards of the same rank
- Straight: 5 cards of consecutive rank
- Flush: set of 5 cards with the same suit
- Straight Flush: a straight and a flush
- 4 of a kind: 4 cards of the same value
- Full House: 3 of one value and 2 of another
- Flush: a flush, but not a straight
- Straight: a straight, but not a flush
- 3 of a kind: 3 of the same value, but not a full house or 4 of a kind
- 2 Pairs: 2 pairs, but not 4 of a kind or full house

Counting with Combinations

4 of a kind: 4 cards of the same value
How many different Poker hands with 4 of a kind are there?

- 13 choices for the value of the four cards
- 12 choices for the value of the fifth card

■ 4 choices for the suit of the fifth card

$$
13 \times 12 \times 4=624
$$

Equivalently,

- 13 choices for the value of the four cards
- 48 choices for the fifth card

$$
13 \times 48=624
$$

Counting with Combinations

Full House: 3 of one value and 2 of another
How many different Poker hands with Full House are there?

- 13 choices for the value of the three cards
- ($\left.\begin{array}{l}4 \\ 3\end{array}\right)$ choices for the suits of the three cards
- 12 choices for the value of the pair of cards
- ($\left.\begin{array}{l}4 \\ 2\end{array}\right)$ choices for the suits of the pair

$$
13 \times\binom{ 4}{3} \times 12 \times\binom{ 4}{2}=3,744
$$

Counting with Combinations

A school committee of 8 faculty members has to be formed, subject to

- The committee should have 5 and 3 members from the EE and CS dept
- EE department has 30 and CS has 20 members

How many different committees can be made?

$$
\binom{30}{5} \times\binom{ 20}{3}
$$

