Discrete Mathematics

Counting

- Introduction and Applications
- Sum and Product Rule
- The Complement Rule
- Inclusion-Exclusion Principle
- The Pigeon-Hole Principle
- Permutations and Combinations
- Combinatorial Proofs
- Permutation and Combinations with Repetitions

Imdad ullah Khan

Inclusion-Exclusion Principle

I have 32 students in one section and 35 students in the other section. Suppose I give the grade A to one student.

How many choices do I have in total?

Number of choices $=32+35$

I have 32 students in Disc. Math. and 35 students in Prog. course. Suppose I give the grade A to one student.

How many choices do I have in total?

Number of choices $=32+35$
Students in both courses are counted twice

Inclusion-Exclusion Principle

Inclusion-Exclusion Principle

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

ICP 11-11 Let $A=\{2,4,7,9\}$ and $B=\{1,3,7,8,9,5\}$. What is $|A \cup B|$?

Inclusion-Exclusion Principle

Inclusion-Exclusion Principle

$$
\begin{aligned}
|A \cup B \cup C|= & |A|+|B|+|C| \\
& -|A \cap B|-|A \cap C|-|B \cap C| \\
& +|A \cap B \cap C|
\end{aligned}
$$

Inclusion-Exclusion Principle

Inclusion-Exclusion Principle

$$
\begin{aligned}
|A \cup B \cup C|= & |A|+|B|+|C| \\
& -|A \cap B|-|A \cap C|-|B \cap C| \\
& +|A \cap B \cap C|
\end{aligned}
$$

ICP 11-12 $A=\{2,4,7,9\}, B=\{3,7,8,9,5\}$, and $C=\{1,4,5,6,9\}$ What is $|A \cup B \cup C|$?

General Inclusion-Exclusion Principle

General Inclusion-Exclusion Principle

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right| & =\sum_{i}\left|A_{i}\right| \\
& -\sum_{i \neq j}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{i \neq j \neq k}\left|A_{i} \cap A_{j} \cap A_{k}\right| \\
& \cdots \\
& +(-1)^{n-1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

General Inclusion-Exclusion Principle

How many integers between 1 and 300 (inclusive) are divisible by 5 or 7 ?

- $M_{5}=\{a \in \mathbb{Z}: 1 \leq a \leq 300 \wedge 5 \mid a\}$

■ $M_{7}=\{a \in \mathbb{Z}: 1 \leq a \leq 300 \wedge 7 \mid a\}$

$$
\begin{gathered}
\left|M_{5}\right|=\left\lfloor\frac{300}{5}\right\rfloor \quad\left|M_{7}\right|=\left\lfloor\frac{300}{7}\right\rfloor \quad\left|M_{5} \cap M_{7}\right|=\left\lfloor\frac{300}{35}\right\rfloor \\
\left|M_{5} \cup M_{7}\right|=\left|M_{5}\right|+\left|M_{7}\right|-\left|M_{5} \cap M_{7}\right|
\end{gathered}
$$

General Inclusion-Exclusion Principle

ICP 11-13

How many integers between 1 and 300 (inclusive) are divisible by 3,5 or 7 ?

- $M_{3}=\{a \in \mathbb{Z}: 1 \leq a \leq 300 \wedge 3 \mid a\}$
- $M_{5}=\{a \in \mathbb{Z}: 1 \leq a \leq 300 \wedge 5 \mid a\}$

■ $M_{7}=\{a \in \mathbb{Z}: 1 \leq a \leq 300 \wedge 7 \mid a\}$

1 $\left|M_{3}\right|=? \quad\left|M_{5}\right|=? \quad\left|M_{7}\right|=$?
$2\left|M_{3} \cap M_{5}\right|=? \quad\left|M_{5} \cap M_{7}\right|=? \quad\left|M_{3} \cap M_{7}\right|=$?
3 $\left|M_{3} \cap M_{5} \cap M_{7}\right|=$?

$$
\left|M_{3} \cup M_{5} \cup M_{7}\right|=?
$$

General Inclusion-Exclusion Principle

ICP 11-14

How many integers between 1 and 300 (inclusive) are divisible by 3,5 but not 7 ?

- $M_{3}=\{a \in \mathbb{Z}: 1 \leq a \leq 300 \wedge 3 \mid a\}$
- $M_{5}=\{a \in \mathbb{Z}: 1 \leq a \leq 300 \wedge 5 \mid a\}$

■ $M_{7}=\{a \in \mathbb{Z}: 1 \leq a \leq 300 \wedge 7 \mid a\}$
$1\left|M_{3}\right|=? \quad\left|M_{5}\right|=? \quad\left|\overline{M_{7}}\right|=$?
$2\left|M_{3} \cap M_{5}\right|=? \quad\left|M_{5} \cap \overline{M_{7}}\right|=? \quad\left|M_{3} \cap \overline{M_{7}}\right|=$?
$3\left|M_{3} \cap M_{5} \cap \overline{M_{7}}\right|=$?

$$
\left|M_{3} \cup M_{5} \cup \overline{M_{7}}\right|=?
$$

General Inclusion-Exclusion Principle

ICP 11-15

How many integers between 1 and 300 (inclusive) are divisible by 7 but by neither 3 nor 5?

General Inclusion-Exclusion Principle

Find the number of passwords made from the characters

$$
\{a, b, f, g, h, l, m, o, t, u\}
$$

- Length of password is 10 but no repetition

■ No password contain the word 'gulf', 'math' or 'boat'.

Count invalid passwords!

Passwords containing 'gulf'
'gulf' and 'math'
'boat' and 'math'

Treat 'gulf' as a block! 7! 'gulf' and 'math' as blocks! 4! 'boat' and 'math' as blocks! 0

$$
10!-7!-7!-7!+4!+4!
$$

Analyzing a school report

90 students in DM: 60 are boys.

$$
\begin{aligned}
& \triangleright|D|=90,|D \cap B|=60 \\
& \triangleright|P|=60,|B \cap P|=32
\end{aligned}
$$

60 students in CP; 32 are boys.
56 students are regist. in Eco; 36 are boys and 34 are also regist. in CP.

$$
\triangleright|E|=56,|B \cap E|=36,|E \cap P|=34
$$

30 boys are registered in CP and Eco.
$\triangleright|B \cap E \cap P|=30$
D : students in DM (all students). $\quad B$: boys.
$P \subseteq D$: students in $\mathrm{CP} \quad E \subseteq D$: students in Eco.
Find G : those girls who are only taking DM

$$
\begin{aligned}
& G=D \backslash(B \cup E \cup P) \\
& |G|=|D \backslash(B \cup E \cup P)|=|D|-|B \cup E \cup P|= \\
& |D|-|B|-|E|-|P|+|B \cap E|+|B \cap P|+|E \cap P|-|B \cap E \cap P| \\
& =90-60-56-60+36+32+34-30=-14
\end{aligned}
$$

Analyzing a school report

AUTHOR OF THE NTW YORK TMMCS BESTSCLLIR INNUMERACY

A

MATHEMATICIAN READS THE NEWSPAPER

General Inclusion-Exclusion Principle

Some common and useful bounds on cardinalities that follow from the Inclusion-Exclusion Principle

Theorem

Suppose A and B are subsets of a finite universal set U. Then
$1|A \cup B|=|A|+|B|-|A \cap B|$
$2|A \cap B| \leq \min \{|A|,|B|\}$
$3|A \cup B| \geq \max \{|A|,|B|\}$
$4|A \backslash B|=|A|-|A \cap B| \geq|A|-|B|$
$5|\bar{A}|=|U|-|A|$
б $|A \oplus B|=|A \cup B|-|A \cap B|=|A|+|B|-2|A \cap B|=|A \backslash B|+|B \backslash A|$

