## Discrete Mathematics

## Counting

- Introduction and Applications
- Sum and Product Rule
- The Complement Rule
- Inclusion-Exclusion Principle
- The Pigeon-Hole Principle
- Permutations and Combinations
- Combinatorial Proofs
- Permutation and Combinations with Repetitions

Imdad ullah Khan

## Sum Rule

## Sum Rule

If a task can be done either in one of $n_{1}$ ways or in one of $n_{2}$ different ways, then there are $n_{1}+n_{2}$ ways to do the task

## Product Rule

Suppose you have 9 shirts and 6 pairs of pants


How many choices do you have for an outfit?

$$
9 \times 6=54
$$

## Product Rule

Suppose you have 9 shirts, 6 pairs of pants and 4 ties


How many choices do you have for an outfit?

$$
9 \times 6 \times 4=216
$$

## Product Rule

## Product Rule

Suppose a procedure can be broken down into two successive tasks.

- If there are $n_{1}$ ways to do the first task and
- for each way of doing the first task, there are $n_{2}$ ways to do the second task,
then there are $n_{1} \times n_{2}$ ways to do the procedure


## Product Rule



To find the total possibilities we can multiply each independent option.
$3 \times 3 \times 3=27$ total possibilities
source: https://www.goteachmaths.co.uk/

## Product Rule

## Set theoretic version of the Product Rule

$$
|A \times B|=|A| \times|B|
$$

In general,

$$
\left|A_{1} \times A_{2} \times \ldots \times A_{n}\right|=\left|A_{1}\right| \times\left|A_{2}\right| \times \cdots \times\left|A_{n}\right|
$$

## Product Rule

How many ways to arrange the letters $A$ and $B$ ?

Break the procedure of arranging $A$ and $B$ into two successive tasks

1. choose first letter
$\triangleright 2$ ways to do it
2. choose second letter
$\triangleright$ For each way for task-1, 1 way to do it

Number of ways to arrange $A$ and $B$ is $(2 \times 1)$
$A B \quad B A$

## Product Rule

ICP 11-3 How many ways to arrange the letters $A, B$, and $C$ ?

Break the procedure of arranging $A, B$, and $C$ into 3 successive tasks

1. choose first letter
$\triangleright 3$ ways to do it
2. choose second letter
3. choose third letter
$\triangleright$ For each way for task-1, 2 ways to do it
$\triangleright$ For each way for task-1 \& 2, 1 way to do it
$A B C, A C B, B A C, B C A, C A B, C B A$

## Product Rule

ICP 11-4 How many ways to arrange the letters $A, B, C$, and $D$ ?

| $A B C D$ | $B A C D$ | $C A B D$ | $D A B C$ |
| :--- | :--- | :--- | :--- |
| $A B D C$ | $B A D C$ | $C A D B$ | $D A C B$ |
| $A C B D$ | $B C A D$ | $C B A D$ | $D B A C$ |
| $A C D B$ | $B C D A$ | $C B D A$ | $D B C A$ |
| $A D B C$ | $B D A C$ | $C D A B$ | $D C A B$ |
| $A D C B$ | $B D C A$ | $C D B A$ | $D C B A$ |

## Product Rule

ICP 11-5 How many ways to arrange $n$ letters ?

| Number of Letters | Ways to arrange them |
| :---: | :---: |
| 1 | $1=1!$ |
| 2 | $2=2!$ |
| 3 | $6=3!$ |
| 4 | $24=4!$ |

Number of ways to arrange $n$ letters is $n$ !

## Product Rule

4 CS students $\{a, b, c, d\}$ and 3 EE students $\{x, y, z\}$ want to make teams of 2 , with 1 CS and 1 EE student in each team

How many different teams can be made?

Break team-making into 2 successive tasks

1. choose CS student
$\triangleright 4$ ways to do it
2. choose EE student
$\triangleright$ For each way for task-1, 3 ways to do it

Number of different teams: $4 \times 3=12$

$$
\begin{array}{ccc}
(a, x) & (a, y) & (a, z) \\
(b, x) & (b, y) & (b, z) \\
(c, x) & (c, y) & (c, z) \\
(d, x) & (d, y) & (d, z)
\end{array}
$$

## Product Rule

ICP 11-6 Suppose you have to choose a project from $4 \mathrm{~S} / \mathrm{W}$ projects AND a project from 5 research projects.

How many choices do you have?

$$
4 \times 5=20
$$

## Product Rule

$$
\left[\begin{array}{ll}
3 & 8 \\
4 & 6
\end{array}\right]+\left[\begin{array}{cc}
4 & 0 \\
1 & -9
\end{array}\right]=\left[\begin{array}{cc}
7 & 8 \\
5 & -3
\end{array}\right]
$$

Matrix Addition

Algorithm Addition of two $m \times n$ matrices $A$ and $B$, return $C=A+B$ for $i=1$ to $m$ do

$$
\text { for } j=1 \text { to } n \text { do }
$$

$$
C[i][j] \leftarrow A[i][j]+B[i][j]
$$

return $C$

How many addition operations are performed?

$$
m \times n
$$

## Product Rule

A license plate contains 3 letters and 4 digits.
How many different license plates are possible?


| $L$ | $E$ | $B$ | 5 | 7 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1st Place - 26 choices
2nd Place - 26 choices
3rd Place - 26 choices
4th Place - 10 choices
5th Place - 10 choices
6th Place - 10 choices
7th Place - 10 choices
$(26)^{3} \times(10)^{4}$

## Product Rule

ICP 11-7 How many 5 digits Postal Codes are there?

| 0 | 8 | 8 | 5 | 4 |
| :--- | :--- | :--- | :--- | :--- |


| 1st Place -10 choices | $\triangleright(0,1,2,3,4,5,6,7,8,9)$ |
| :--- | :--- |
| 2nd Place -10 choices | $\triangleright(0,1,2,3,4,5,6,7,8,9)$ |
| 3rd Place -10 choices | $\triangleright(0,1,2,3,4,5,6,7,8,9)$ |
| 4th Place -10 choices | $\triangleright(0,1,2,3,4,5,6,7,8,9)$ |
| 5th Place -10 choices | $\triangleright(0,1,2,3,4,5,6,7,8,9)$ |
|  |  |
|  | $(10)^{5}$ |

## Product Rule

ICP 11-8 How many 5 digits Postal Codes are there with no repetition?

| 0 | 8 | 9 | 3 | 7 |
| :--- | :--- | :--- | :--- | :--- |


| 1st Place $-\quad 10$ choices | $\triangleright(0,1,2,3,4,5,6,7,8,9)$ |  |
| :--- | ---: | ---: |
| 2nd Place $-\quad 9$ choices | $\triangleright(1,2,3,4,5,6,7,8,9)$ |  |
| 3rd Place $-\quad 8$ choices | $\triangleright(1,2,3,4,5,6,7,9)$ |  |
| 4th Place $-\quad 7$ choices | $\triangleright(1,2,3,4,5,6,7)$ |  |
| 5th Place $-\quad 6$ choices | $\triangleright(1,2,4,5,6,7)$ |  |
|  |  |  |
|  | $(10 \times 9 \times 8 \times 7 \times 6)$ |  |

## Product Rule

ICP 11-9 How many passwords can be made with the following rules?

- Can contain digits and case sensitive English letters
- Must be 5 to 7 characters long
- Must begin with a letter
$P_{5}:=$ set of length 5 passwords
$P_{6}$ and $P_{7}$ are similarly defined

$$
\begin{gathered}
\left.\begin{array}{|l|}
\hline
\end{array}\right] \\
\left|\begin{array}{l}
P_{5} \\
P_{6} \\
P_{7}
\end{array}\right|=52 \times 62^{4}=52 \times 62^{5} \\
=62^{6}
\end{gathered}
$$

$P_{5}, P_{6}, P_{7}$ make partition of all valid passwords
A 'valid' password in exactly one of $P_{5}, P_{6}$, or $P_{7}$

By the sum rule, total number of valid passwords $=\left|P_{5}\right|+\left|P_{6}\right|+\left|P_{7}\right|$

