Counting

- Introduction and Applications
- Sum and Product Rule
- The Complement Rule
- Inclusion-Exclusion Principle
- The Pigeon-Hole Principle
- Permutations and Combinations
- Combinatorial Proofs
- Permutation and Combinations with Repetitions

Imdad ullah Khan

Sum Rule

If a task can be done either in one of n_1 ways or in one of n_2 different ways, then there are $n_1 + n_2$ ways to do the task

Suppose you have 9 shirts and 6 pairs of pants

How many choices do you have for an outfit?

$$9 \times 6 = 54$$

Suppose you have 9 shirts, 6 pairs of pants and 4 ties

How many choices do you have for an outfit?

$$9 \times 6 \times 4 = 216$$

Suppose a procedure can be broken down into two successive tasks.

- If there are n_1 ways to do the first task and
- for each way of doing the first task, there are n₂ ways to do the second task,

then there are $n_1 \times n_2$ ways to do the procedure

To find the total possibilities we can **multiply** each independent option.

 $3 \times 3 \times 3 = 27$ total possibilities

source: https://www.goteachmaths.co.uk/

Set theoretic version of the Product Rule

$$|A \times B| = |A| \times |B|$$

In general,

$$|A_1 \times A_2 \times \ldots \times A_n| = |A_1| \times |A_2| \times \cdots \times |A_n|$$

How many ways to arrange the letters A and B?

Break the procedure of arranging A and B into two successive tasks

- 1. choose first letter > 2 ways to do it
- 2. choose second letter > For each way for task-1, 1 way to do it

Number of ways to arrange A and B is (2×1)

AB BA

ICP 11-3 How many ways to arrange the letters A, B, and C?

Break the procedure of arranging A, B, and C into 3 successive tasks

- 1. choose first letter > 3 ways to do it
- 2. choose second letter > For each way for task-1, 2 ways to do it
- 3. choose third letter \triangleright For each way for task-1 & 2, 1 way to do it

ABC, ACB, BAC, BCA, CAB, CBA

ICP 11-4 How many ways to arrange the letters A, B,C, and D?

ABCD	BACD	CABD	DABC
ABDC	BADC	CADB	DACB
ACBD	BCAD	CBAD	DBAC
ACDB	BCDA	CBDA	DBCA
ADBC	BDAC	CDAB	DCAB
ADCB	BDCA	CDBA	DCBA

ICP 11-5 How many ways to arrange *n* letters ?

Number of Letters	Ways to arrange them
1	1 = 1!
2	2 = 2!
3	6 = 3!
4	24 = 4!

Number of ways to arrange n letters is n!

4 CS students $\{a, b, c, d\}$ and 3 EE students $\{x, y, z\}$ want to make teams of 2, with 1 CS and 1 EE student in each team

How many different teams can be made?

Break team-making into 2 successive tasks

- 1. choose CS student > 4 ways to do it
- 2. choose EE student > For each way for task-1, 3 ways to do it

Number of different teams: $4 \times 3 = 12$

$$\begin{array}{cccc} (a,x) & (a,y) & (a,z) \\ (b,x) & (b,y) & (b,z) \\ (c,x) & (c,y) & (c,z) \\ (d,x) & (d,y) & (d,z) \end{array}$$

ICP 11-6 Suppose you have to choose a project from 4 S/W projects AND a project from 5 research projects.

How many choices do you have?

 $4\times 5~=~20$

Algorithm Addition of two $m \times n$ matrices A and B, return C = A + B

for i = 1 to m do for j = 1 to n do $C[i][j] \leftarrow A[i][j] + B[i][j]$ return C

How many addition operations are performed?

 $m \times n$

A license plate contains 3 letters and 4 digits.

How many different license plates are possible?

1st Place – 26 choices 2nd Place – 26 choices 3rd Place – 26 choices 4th Place – 10 choices 5th Place – 10 choices 6th Place – 10 choices 7th Place – 10 choices

$$(26)^3 \times (10)^4$$

ICP 11-7 How many 5 digits Postal Codes are there?

0 8 8 5 4

- 1st Place 10 choices
- 2nd Place 10 choices
- 3rd Place 10 choices
- 4th Place 10 choices
- 5th Place 10 choices

 \triangleright (0,1,2,3,4,5,6,7,8,9)

- \triangleright (0,1,2,3,4,5,6,7,8,9)
- \triangleright (0,1,2,3,4,5,6,7,8,9)
- \triangleright (0,1,2,3,4,5,6,7,8,9)
- \triangleright (0,1,2,3,4,5,6,7,8,9)

ICP 11-8 How many 5 digits Postal Codes are there with no repetition?

0 8 9 3 7

- 1st Place 10 choices
- 2nd Place 9 choices
- 3rd Place 8 choices
- 4th Place 7 choices
- 5th Place 6 choices

 $\triangleright (0,1,2,3,4,5,6,7,8,9)$ $\triangleright (1,2,3,4,5,6,7,8,9)$ $\triangleright (1,2,3,4,5,6,7,8)$ $\triangleright (1,2,3,4,5,6,7,9)$ $\triangleright (1,2,3,4,5,6,7)$

 \triangleright (1,2,3,4,5,6,7) \triangleright (1,2,4,5,6,7)

 $(10 \times 9 \times 8 \times 7 \times 6)$

ICP 11-9 How many passwords can be made with the following rules?

- Can contain digits and case sensitive English letters
- Must be 5 to 7 characters long
- Must begin with a letter
- $P_5 :=$ set of length 5 passwords
- P_6 and P_7 are similarly defined

 P_5, P_6, P_7 make partition of all valid passwords A 'valid' password in exactly one of P_5, P_6 , or P_7

By the sum rule, total number of valid passwords $= |P_5| + |P_6| + |P_7|$

$$\begin{vmatrix} P_5 \\ P_6 \\ P_6 \\ P_7 \end{vmatrix} = \begin{array}{c} 52 \times 62^4 \\ 52 \times 62^5 \\ 52 \times 62^6 \\ \end{array}$$