Counting

- Introduction and Applications
- Sum and Product Rule
- The Complement Rule
- Inclusion-Exclusion Principle
- The Pigeon-Hole Principle
- Permutations and Combinations
- Combinatorial Proofs
- Permutation and Combinations with Repetitions

Imdad ullah Khan

Suppose you have 9 long sleeves shirts and 8 short sleeves shirts

How many choices do you have for a shirt?

$$9 + 8 = 17$$

If a task can be done <u>either</u> in one of n_1 ways <u>or</u> in one of n_2 different ways, then there are $n_1 + n_2$ ways to do the task

If A and B are disjoint sets, then

$$|A \cup B| = |A| + |B|$$

I have 32 students in one section and 35 students in the other section. Suppose I give the grade A to one student.

How many choices do I have in total?

Suppose you have to choose a project from 4 software development projects or from 5 research projects.

How many choices do you have?

The sum rule is easy, but identifying the sets or constructing them requires some thinking and trial and error

Generalized Sum Rule

Sum Rule

If A_1, A_2, \ldots, A_n are **disjoint sets**, then

$$\left|\bigcup_{i=1}^{n}A_{i}\right| = \sum_{i=1}^{n}|A_{i}|$$

ICP 11-1

Divide $4^{\prime\prime}\times4^{\prime\prime}$ square into 16 unit squares by parallel lines

How many squares are there in total?

4

ICP 11-1

Divide $4^{\prime\prime}\times4^{\prime\prime}$ square into 16 unit squares by parallel lines

How many squares are there in total?

 A_k : Number of squares of length k

Total number of squares are

$$|A_1| + |A_2| + |A_3| + |A_4|$$

$$|A_1| = 16$$
 $|A_2| = 9$ $|A_3| = ? |A_4| = ?$

Suppose I roll red and blue dice!

In how many outcomes the dice show different values?

12	13	14	15	16
21	<mark>23</mark>	24	2 <mark>5</mark>	2 <mark>6</mark>
31	<mark>32</mark>	<mark>34</mark>	3 <mark>5</mark>	<mark>36</mark>
41	42	43	45	46
51	<mark>52</mark>	<mark>53</mark>	<mark>54</mark>	<mark>56</mark>
61	<mark>62</mark>	<mark>63</mark>	<mark>64</mark>	6 <mark>5</mark>

Suppose I roll red and blue dice!

In how many outcomes the dice show different values?

 A_i = set of all outcomes in which red die shows *i* and the blue die shows something else

S = set of outcomes where the dice show different values

$$|S| = ?$$

$$|S| = \left| \bigcup_{i=1}^{6} A_i \right| = \sum_{i=1}^{6} |A_i| = ?$$