Discrete Mathematics

Induction

■ Principle of Mathematical Induction

- Proofs by Induction
- Strong Induction

■ Well Ordering Principle

Imdad ullah Khan

Strong Induction

Principle of Mathematical Induction

$$
[P(0) \wedge \forall k \geq 0[P(k) \rightarrow P(k+1)]] \longrightarrow \forall n \geq 0 P(n)
$$

Proof using Induction

- Basis Step: Prove $P(0)$ is true
- IH: Assume $P(n)$
- Inductive Step: Using $P(n)$, prove $P(n+1)$

Principle of Strong Mathematical Induction

$$
[P(0) \wedge \forall k \geq 0[\forall 0 \leq i \leq k P(i) \rightarrow P(k+1)]] \longrightarrow \forall n \geq 0 P(n)
$$

Proof using Strong Induction

- Basis Step: Prove $P(0)$ is true
- IH: Assume $P(k)$ is true for all $1 \leq k \leq n$
- IS: Using $\forall k \leq n P(k)$, prove $P(n+1)$

Well Ordering Principle

Principle of Well Ordering

Any nonempty set of nonnegative integers has a smallest element

What is the smallest element of

ICP 10-11 $\{x \in \mathbb{Z}: x<7\}$
ICP 10-12 $\{x \in \mathbb{R}: 0<x<1\}$
ICP 10-13 $\left\{3.9+\frac{1}{n}: n \in \mathbb{Z}^{+}\right\}$
ICP 10-14 $\left\{\left\lfloor 3.9+\frac{1}{n}\right\rfloor: n \in \mathbb{Z}^{+}\right\}$

Why induction work

Principle of Well Ordering

Any nonempty set of nonnegative integers has a smallest element

Principle of Mathematical Induction

$$
[P(0) \wedge \forall k \geq 0[P(k) \rightarrow P(k+1)]] \rightarrow \forall n \geq 0 P(n)
$$

Proof using Mathematical Induction
1 Basis Step: Prove $P(0)$ is true
2 Inductive Step: $\underbrace{\text { Assume } P(n)}$ Using $P(n)$, prove $P(n+1)$ IH:

We argue why induction make sense using the principle of well ordering and how they are essentially equivalent

Why induction work

$$
[\underbrace{P(0)}_{\text {basis step }} \wedge \underbrace{\forall k(P(k) \rightarrow P(k+1))}_{\text {induction step }}] \longrightarrow \forall n \geq 0 P(n)
$$

Suppose we proved 1) $P(0)$ and 2) $\forall k P(k) \rightarrow P(k+1)$
and assume $\neg \forall n P(n) \equiv \exists n \neg P(n)$
Let $S=\{k: \neg P(k)\}$
Let m be its least element
\triangleright i.e. induction does not work
$\triangleright S \neq \emptyset, \quad$ why?
\triangleright one exists by well-ordering

- $P(m)$ is false $\because m \in S$
- $m \neq 0 \because P(0)$ is true by 1$)$
- $P(m-1)$ is true $\because m$ is the least element of S
- But $\underbrace{P(m-1)}_{\text {true }} \rightarrow \underbrace{P(m)}_{\text {false }}$ is true by 2$)$
\triangleright Contradiction

Proof using Principle of Well Ordering

Theorem (The Division Algorithm)

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \leq r<d$ such that $a=d q+r$

- q is called the quotient
- r is called the remainder
- d is called the divisor
- a is called the dividend

Proof using Principle of Well Ordering

Theorem (The Division Algorithm)

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \leq r<d$ such that $a=d q+r$
quotient and remainder when 11 is divided by 5

$$
11=5 \times 2+1
$$

Notation:
$q=2=11 \operatorname{div} 5$
$r=1=11 \bmod 5$

Proof using Principle of Well Ordering

Theorem (The Division Algorithm)

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \leq r<d$ such that $a=d q+r$
quotient and remainder when -11 is divided by 5

$$
-11=5 \times-3+4
$$

Notation:

$$
\begin{aligned}
& q=-3=-11 \operatorname{div} 5 \\
& r=4=-11 \bmod 5
\end{aligned}
$$

Proof using Principle of Well Ordering

Theorem (The Division Algorithm)

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \leq r<d$ such that $a=d q+r$
$11=5 \times 2+1$
Given positive a, repeatedly subtract d until what remains r is $0 \leq r<d$
$-11=5 \times-3+4$
Given negative a, repeatedly add d until what remains r is $0 \leq r<d$

Proof using Principle of Well Ordering

Theorem (The Division Algorithm)

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \leq r<d$ such that $a=d q+r$

Existence: $\quad S=\{a-d q \geq 0: q \in \mathbb{Z}\} \quad S \neq \emptyset$
Let $r=a-d q_{0}$ be the least element of $S \quad r \geq 0$
$r<d$?
If $r \geq d$, then $a-d\left(q_{0}+1\right)=r-d \geq 0$
$r-d<r$ is in $S, \quad \triangleright$ a contradiction to minimality of r

There are q and $0 \leq r<d$ with $a=d q+r$

Proof using Principle of Well Ordering

Theorem (The Division Algorithm)

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \leq r<d$ such that $a=d q+r$

Uniqueness:

Let $a=d q_{1}+r_{1}$ and $a=d q_{2}+r_{2}$ with $q_{1} \neq q_{2}$ and $0 \leq r_{1} \neq r_{2}<d$ $\underbrace{d q_{1}+r_{1}}_{a}-\underbrace{d q_{2}+r_{2}}_{a}=0 \Longrightarrow d\left(q_{1}-q_{2}\right)=r_{2}-r_{1}$
This means d divides $\left(r_{2}-r_{1}\right) \Longrightarrow$ either $\begin{cases}r_{2}=r_{1} & \text { or } \\ d \leq\left|\left(r_{2}-r_{1}\right)\right| & \end{cases}$

$$
\begin{aligned}
& {\left[0 \leq r_{1} \neq r_{2}<d\right] \Longrightarrow-d<r_{2}-r_{1}<d \Longrightarrow\left|r_{2}-r_{1}\right|<d} \\
& \Longrightarrow r_{1}=r_{2}
\end{aligned}
$$

From $r_{1}=r_{2}$, we also get $q_{1}=q_{2}$

