Discrete Mathematics

Induction

■ Principle of Mathematical Induction

- Proofs by Induction
- Strong Induction

■ Well Ordering Principle

Imdad ullah Khan

Proof by Induction

A proposition about non-negative integers, $\forall n P(n)$ is a sequence of propositions (dominoes)

$$
P(0), P(1), P(2), \ldots, P(n), P(n+1), \ldots
$$

Establish two facts

- Prove $P(0)$
the first domino falls
■ Prove $\forall k \geq 0, P(k) \rightarrow P(k+1)$
if a domino falls, then the next domino also falls
॥IIIIII

Strong Induction

Fundamental Theorem of Arithmetic

Every integer ≥ 2 can be written as product of prime(s)
$P(n):=n$ can be written as product of primes
Fundamental Theorem of Arithmetic

$$
\forall n \geq 2 P(n) \quad \triangleright n \text { can be factored into prime(s) }
$$

Strong Induction

Fundamental Theorem of Arithmetic

$$
\forall n \geq 2 P(n) \quad \triangleright n \text { can be factored into prime(s) }
$$

Base Case: 2 is prime, so $P(2)$ is true
Inductive Hypothesis: Assume $P(n)$ is true
Inductive Step: Using $P(n)$ prove $P(n+1)$

Strong Induction

Fundamental Theorem of Arithmetic

$\forall n \geq 2 P(n)$
$\triangleright n$ can be factored into prime(s)

IH: Assume $P(22)$ is true. $22=2 \cdot 11$
Inductive Step: Using $P(22)$ prove $P(23)$
23 is prime, so we don't need $P(22)$
$\triangleright * \rightarrow T=T$
Inductive Step: Using $P(23)$ prove $P(24)$
$24=6 \cdot 4$, how can we use $P(23)$?

Strong Induction

Principle of Mathematical Induction

$$
[P(0) \wedge \forall k \geq 0[P(k) \rightarrow P(k+1)]] \longrightarrow \forall n \geq 0 P(n)
$$

Proof using Induction

- Basis Step: Prove $P(0)$ is true
- IH: Assume $P(n)$
- Inductive Step: Using $P(n)$, prove $P(n+1)$

Principle of Strong Mathematical Induction

$$
[P(0) \wedge \forall k \geq 0[\forall 0 \leq i \leq k P(i) \rightarrow P(k+1)]] \longrightarrow \forall n \geq 0 P(n)
$$

Proof using Strong Induction

- Basis Step: Prove $P(0)$ is true
- IH: Assume $P(k)$ is true for all $1 \leq k \leq n$
- IS: Using $\forall k \leq n P(k)$, prove $P(n+1)$

Strong Induction

Fundamental Theorem of Arithmetic

$\forall n \geq 2 P(n)$
$\triangleright n$ can be factored into prime(s)

IH: Assume $P(22)$ is true. $22=2 \cdot 11$
Inductive Step: Using $P(22)$ prove $P(23)$
23 is prime, so we don't need $P(22)$
$\triangleright * \rightarrow T=T$
Inductive Step: Using $P(23)$ prove $P(24)$
$24=6 \cdot 4$, how can we use $P(23)$?

Strong Induction

Fundamental Theorem of Arithmetic

$$
\forall n \geq 2 P(n) \quad \triangleright n \text { can be factored into prime(s) }
$$

The proof is by strong induction on n
Base Case: 2 is prime, so $P(2)$ is true
IH: Assume $P(k)$ is true for $1 \leq k \leq n$
Inductive Step: Using IH prove $P(n+1)$

- If $(n+1)$ is prime, $P(n+1)$ is true
- else $(n+1)=a \cdot b$
- $a, b \leq n$
- by IH both a and b factor into primes
- so $(n+1)$ factors into primes (grand product of factors of a and b)

Strong Induction

Fundamental Theorem of Arithmetic

$\forall n \geq 2 P(n)$
$\triangleright n$ can be factored into prime(s)

Later we will prove that

Fundamental Theorem of Arithmetic

Every integer ≥ 2 can be uniquely written as product of prime(s)

Primes are the building blocks of natural numbers

Strong Induction

ICP 10-10

Show that every positive integer n can be written as a sum of distinct powers of two, that is, as a sum of a subset of the integers in

$$
\{1,2,4,8,16,32, \ldots\}
$$

[Hint: For the inductive step, consider the cases when $k+1$ is even and odd. When it is even, then $(k+1) / 2$ is an integer.]

