Induction

- Principle of Mathematical Induction
- Proofs by Induction
- Strong Induction
- Well Ordering Principle

Imdad ullah Khan

IMDAD ULLAH KHAN (LUMS)

Proof by Induction

A proposition about non-negative integers, $\forall n P(n)$ is a sequence of propositions (dominoes)

 $P(0), P(1), P(2), \ldots, P(n), P(n+1), \ldots$

Fundamental Theorem of Arithmetic

Every integer ≥ 2 can be written as product of prime(s)

P(n) := n can be written as product of primes

Fundamental Theorem of Arithmetic

 $\forall n \geq 2 P(n)$

 \triangleright *n* can be factored into prime(s)

Fundamental Theorem of Arithmetic

 $\forall n \geq 2 P(n)$

▷ *n* can be factored into prime(s)

<u>Base Case:</u> 2 is prime, so P(2) is true

Inductive Hypothesis: Assume P(n) is true

Inductive Step: Using P(n) prove P(n+1)

Fundamental	Theorem	of Arithmetic
-------------	---------	---------------

 $\forall n \geq 2 P(n)$

▷ *n* can be factored into prime(s)

<u>IH:</u> Assume P(22) is true. $22 = 2 \cdot 11$

Inductive Step: Using P(22) prove P(23)

23 is prime, so we don't need P(22)

 $\triangleright * \rightarrow T = T$

Inductive Step: Using P(23) prove P(24)

 $24 = 6 \cdot 4$, how can we use *P*(23)?

Principle of Mathematical Induction

 $\left[P(0) \land \forall k \ge 0 \left[P(k) \to P(k+1) \right] \right] \longrightarrow \forall n \ge 0 P(n)$

Proof using Induction

- *Basis Step:* Prove *P*(0) is true
- IH: Assume P(n)
- Inductive Step: Using P(n), prove P(n+1)

Principle of Strong Mathematical Induction

 $\left[P(0) \land \forall k \ge 0 \left[\forall \ 0 \le i \le k \ P(i) \to P(k+1) \right] \right] \longrightarrow \forall n \ge 0 \ P(n)$

Proof using Strong Induction

- *Basis Step:* Prove *P*(0) is true
- *IH*: Assume P(k) is true for all $1 \le k \le n$
- *IS*: Using $\forall k \leq n P(k)$, prove P(n+1)

Fundamental	Theorem	of Arithmetic
-------------	---------	---------------

 $\forall n \geq 2 P(n)$

▷ *n* can be factored into prime(s)

<u>IH:</u> Assume P(22) is true. $22 = 2 \cdot 11$

Inductive Step: Using P(22) prove P(23)

23 is prime, so we don't need P(22)

 $\triangleright * \rightarrow T = T$

Inductive Step: Using P(23) prove P(24)

 $24 = 6 \cdot 4$, how can we use *P*(23)?

Strong Induction

Fundamental Theorem of Arithmetic

 $\forall n \geq 2 P(n)$

▷ *n* can be factored into prime(s)

The proof is by strong induction on n

<u>Base Case:</u> 2 is prime, so P(2) is true

<u>IH</u>: Assume P(k) is true for $1 \le k \le n$

Inductive Step: Using **IH** prove P(n+1)

If
$$(n+1)$$
 is prime, $P(n+1)$ is true

• else
$$(n+1) = a \cdot b$$

- by IH both a and b factor into primes
- so (n + 1) factors into primes (grand product of factors of a and b)

Fundamental	Theorem	of Arithmetic	
-------------	---------	---------------	--

 $\forall n \geq 2 P(n)$

▷ *n* can be factored into prime(s)

Later we will prove that

Fundamental Theorem of Arithmetic

Every integer ≥ 2 can be uniquely written as product of prime(s)

Primes are the building blocks of natural numbers

ICP 10-10

Show that every positive integer n can be written as a sum of distinct powers of two, that is, as a sum of a subset of the integers in

 $\big\{1,2,4,8,16,32,\dots\big\}$

[Hint: For the inductive step, consider the cases when k + 1 is even and odd. When it is even, then (k + 1)/2 is an integer.]