Discrete Mathematics

Induction

- Principle of Mathematical Induction
- Proofs by Induction

■ Strong Induction
■ Well Ordering Principle

Imdad ullah Khan

Proof by Induction

A proposition about non-negative integers, $\forall n P(n)$ is a sequence of propositions (dominoes)

$$
P(0), P(1), P(2), \ldots, P(n), P(n+1), \ldots
$$

Establish two facts

- Prove $P(0)$
the first domino falls
■ Prove $\forall k \geq 0, P(k) \rightarrow P(k+1)$
if a domino falls, then the next domino also falls
॥IIIIII

Proof by Induction

Theorem

Number of subsets of an n element set is 2^{n}

Basis Step: $n=0$:
Number of subsets of an empty set is $1=2^{0}$

Proof by Induction

Theorem

Number of subsets of an n element set is 2^{n}
IH: Assume it is true for 'any $n-1$ elements set'
For an n-element set S, fix an element $x \in S$ and Let $S^{\prime}=S \backslash\{x\}$
$\mathcal{P}(S)=$ subsets not containing $\times \bigcup$ subsets containing x
\triangleright Subsets not containing x are subsets of S^{\prime}
By $\mathbf{I H}$, number of subsets of $S^{\prime}=2^{n-1} \quad \triangleright \because\left|S^{\prime}\right|=n-1$
\triangleright Subset containing x is $\{x\} \cup$ a subset of S^{\prime}

- number of subsets not containing $x=2^{n-1}$

$$
|\mathcal{P}(S)|=2\left(2^{n-1}\right)=2^{n}
$$

- number of subsets containing $x=2^{n-1}$

Proof by Induction

Theorem

An ATM with only $\$ 3$ and $\$ 5$ bills can generate any amount $n \geq 8$

Basis Step: $n=8$ dollar. A $\$ 3$ bill and a $\$ 5$ bill

Induction Step: Need to prove that given that the ATM can generate n dollar it can generate $n+1$ dollar amount

Case 1: Output of $\$ n$ contains a $\$ 5$ bill
Remove a $\$ 5$ bill and add two $\$ 3$ bills

Case 2: Output of $\$ n$ contains no $\$ 5$ bill, it must have \geq three $\$ 3$ bills Remove three of $\$ 3$ and add two $\$ 5$ bills

Proof by Induction

ICP 10-7 Prove that

Theorem

An ATM with only $\$ 3$ and $\$ 7$ bills can generate any amount $n \geq 12$

Basis Step: $n=12$ dollar.
$\triangleright 4 \times \$ 3$

Induction Step: Prove if ATM can generate $\$ n$, then it can generate $\$ n+1$

Case 1: Output of $\$ n$ contains \geq two $\$ 3$ bills

Case 2: Output of $\$ n$ contains \leq one $\$ 3$ bill, it must have \geq two $\$ 7$ bills

Loop Invariant

FINDMAX()

$$
\begin{aligned}
& \max \leftarrow 0 \\
& \text { for }(i=0 ; i<n ; i++) \\
& \quad \text { if }(A[i]>\max) \\
& \quad \max \leftarrow A[i]
\end{aligned}
$$

A is an array of n positive integers

Claim

Loop Invariant

A proposition that remains true throughout the loop

$$
P: \text { After iteration } i \quad m a x=\text { maximum of } A[0 \ldots i]
$$

■ True after iteration $i=0$
■ If true after iteration i, then true after iteration $i+1$

Proof by Induction: Importance of Basis Step

Theorem

$$
n(n+1) \text { is an odd integer }
$$

Proof: Assume it is true for n, i.e.
IH: $\quad n(n+1)$ is an odd number
Given IH, show $(n+1)(n+2)$ is an odd number

$$
(n+1)(n+2)=n(n+1)+2(n+1)
$$

By the $\mathrm{IH}, n(n+1)$ is odd, $2(n+1)$ is even so

$$
(n+1)(n+2) \text { is an odd number }
$$

$2(3)=6$ and $3(4)=12$
Basis Step is missing

Proof by Induction: Importance of Basis Step

Theorem

For every positive integer $n, \sum_{i=1}^{n} i=\left(n+\frac{1}{2}\right)^{2} / 2$
"Basis Step:" The formula is true for $n=1$.
"Inductive Step:" Suppose $\sum_{i=1}^{n} i=\left(n+\frac{1}{2}\right)^{2} / 2$. Then
$\sum_{i=1}^{n+1} i=\sum_{i=1}^{n} i+(n+1)$. By the inductive hypothesis
$\sum_{i=1}^{n+1} i=\left(n+\frac{1}{2}\right)^{2} / 2+n+1=\left(n^{2}+n+\frac{1}{4}\right) / 2+n+1=$ $\left(n^{2}+3 n+\frac{9}{4}\right) / 2=\left(n+\frac{3}{2}\right)^{2} / 2=\left((n+1)+\frac{1}{2}\right)^{2} / 2$.

ICP 10-8 What is wrong with this proof?

Proof by Induction: Importance of Inductive Step

Theorem

All horses are of the same color
$P(n):=$ Any set of n horses have the same color

Theorem

$\forall n P(n)$ is true
Base Case: A single horse is the same color as itself, so $P(1)$ is true IH: $P(n)$ is true, any n horses have the same color Inductive Step: Using $P(n)$ prove $P(n+1)$

Proof by Induction: Importance of Inductive Step

Theorem

$\forall n P(n) \quad$ (Any n horses have the same color)
IH: Any n horses have the same color Inductive Step: Using $P(n)$ prove $P(n+1)$

Proof by Induction: Importance of Inductive Step

Theorem

$\forall n P(n) \quad$ (Any n horses have the same color)
IH: Any n horses have the same color Inductive Step: Using $P(n)$ prove $P(n+1)$

- By IH, the first n horses are of the same color

Proof by Induction: Importance of Inductive Step

Theorem

$\forall n P(n) \quad$ (Any n horses have the same color)
IH: Any n horses have the same color Inductive Step: Using $P(n)$ prove $P(n+1)$

- By IH, the first n horses are of the same color
- By IH, the last n horses are of the same color
- The common horses among the first last n horses can have one color

■ Thus all $n+1$ have the same color

Proof by Induction: Importance of Inductive Step

Theorem
$\forall n P(n) \quad$ (Any n horses have the same color)

ICP 10-9 What is wrong with the above proof?

