Discrete Mathematics

Induction

- Principle of Mathematical Induction
- Proofs by Induction

■ Strong Induction
■ Well Ordering Principle

Imdad ullah Khan

Proof by Induction

A proposition about non-negative integers, $\forall n P(n)$ is a sequence of propositions (dominoes)

$$
P(0), P(1), P(2), \ldots, P(n), P(n+1), \ldots
$$

Establish two facts

- Prove $P(0)$
the first domino falls
■ Prove $\forall k \geq 0, P(k) \rightarrow P(k+1)$
if a domino falls, then the next domino also falls
॥IIIIII

Proof by Induction

Theorem

$$
P(n): \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

ICP 10-1

Formally rewrite to make a (explicit) statement about all positive integers

Theorem

$$
\forall n \in \mathbb{N} \quad \sum_{i=0}^{n} i=\frac{n(n+1)}{2} \quad \text { or } \quad \forall n \in \mathbb{N} P(n)
$$

Proof by Induction

Theorem

$$
\forall n \in \mathbb{N} \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

Proof Outline:

1 The proof is by induction on k
2 Basis Step: Prove that $P(k)$ is true for $k=0$
3 Induction Step: Prove that for all $k, P(k) \rightarrow P(k+1)$
4 Conclude that $\forall n \in \mathbb{N} P(n)$ is true

Proof by Induction

Theorem

$$
\forall n \in \mathbb{N} \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

Proof:

Basis Step: need to prove that $P(0)$ is true

$$
P(0): \quad \sum_{i=0}^{0} i=\frac{0(0+1)}{2}
$$

This is clearly true, because both sides are equal to 0

Proof by Induction

Theorem

$$
\forall n \in \mathbb{N} \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

Proof:

Inductive Step: need to prove that $\quad \forall k \quad P(k) \rightarrow P(k+1)$ is true
Inductive Hypothesis (IH): Assume that $P(k)$ is true i.e. $\sum_{i=0}^{k} i=\frac{k(k+1)}{2}$
Given IH, show that $P(k+1)$ is true, i.e, $\sum_{i=0}^{k+1} i=\frac{(k+1)(k+2)}{2}$

Proof by Induction

Inductive Step: need to prove that $\quad \forall k \quad P(k) \rightarrow P(k+1)$ is true
Inductive Hypothesis (IH): Assume that $P(k)$ is true i.e. $\quad \sum_{i=0}^{k} i=\frac{k(k+1)}{2}$
Given IH, show that $P(k+1)$ is true, i.e, $\sum_{i=0}^{k+1} i=\frac{(k+1)(k+2)}{2}$

$$
\begin{aligned}
\sum_{i=0}^{k+1} i & =\sum_{i=0}^{k} i+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1) \quad \triangleright \text { by the Inductive Hypothesis } \\
& =(k+1)\left(\frac{k}{2}+1\right)=\frac{(k+1)(k+2)}{2} \Longrightarrow P(k+1) \text { is true }
\end{aligned}
$$

Proof by Induction

Theorem

The sum of first n positive odd integers is n^{2}

ICP 10-2

Restate it formally to make it a statement about all positive integers

Theorem

$$
\forall n \in \mathbb{Z}^{+} \sum_{i=1}^{n}(2 i-1)=n^{2}
$$

Proof by Induction

Theorem

$$
\forall n \in \mathbb{Z}^{+} \sum_{i=1}^{n}(2 i-1)=n^{2}
$$

ICP 10-3 What will be the basis step?
Proof: The proof is by induction on n.
Basis Step:

$$
n=1
$$

$$
P(1): \sum_{i=1}^{1}(2 i-1)=1=1^{2}
$$

Clearly true!

Proof by Induction

Theorem

$$
\forall n \in \mathbb{Z}^{+} \sum_{i=1}^{n}(2 i-1)=n^{2}
$$

Inductive Hypothesis (IH): Assume $P(n)$ is true, i.e.

$$
\sum_{i=1}^{n}(2 i-1)=n^{2}
$$

Inductive Step: Given IH, show that $P(n+1)$ is true,

$$
\sum_{i=1}^{n+1}(2 i-1)=(n+1)^{2}
$$

Proof by Induction

Inductive Step: Given IH, show that $P(n+1)$ is true,

$$
\begin{aligned}
& \quad \sum_{i=1}^{n+1}(2 i-1)=(n+1)^{2} \\
& \sum_{i=1}^{n+1}(2 i-1)= \sum_{i=1}^{n}(2 i-1)+2(n+1)-1 \\
&= n^{2}+2(n+1)-1 \quad \triangleright \text { by the inductive hypothesis } \\
&= n^{2}+(2 n+1) \\
&=(n+1)^{2}
\end{aligned}
$$

Proof by Induction

Theorem

Sum of first n powers of 2 is $2^{n}-1$

Start with $2^{0}=1$

ICP 10-4 Formally, restate as a statement about all positive integers?

Theorem

$$
\forall n \in \mathbb{N} \sum_{i=0}^{n-1} 2^{i}=2^{n}-1
$$

Proof by Induction

Theorem

$$
\forall n \in \mathbb{N} \sum_{i=0}^{n-1} 2^{i}=2^{n}-1
$$

Proof: Basis Step: Rule: Sum of nothing is 0 .

$$
\sum_{i=0}^{-1} 2^{i}=0 \quad \text { and } \quad 2^{0}-1=0
$$

Inductive Step:

$$
\sum_{i=0}^{n} 2^{i}=\sum_{i=0}^{n-1} 2^{i}+2^{n}=2^{n}-1+2^{n}=2^{n+1}-1
$$

Proof by Induction

ICP 10-5 Prove that

Theorem

The sum of squares of first n positive integers is $\frac{n(n+1)(2 n+1)}{6}$
Proof: Proof by induction on n

$$
\text { Basis Step: } n=0 \quad n=1 \quad 1^{2}=\frac{1(1+1)(2(1)+1)}{6}
$$

Inductive Step: Prove

$$
\underbrace{\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}}_{\text {inductive hypothesis }} \Longrightarrow \sum_{i=1}^{n+1} i^{2}=\frac{(n+1)(n+2)(2 n+3)}{6}
$$

Proof by Induction

ICP 10-6 Prove that

Theorem

The sum of cubes of first n positive integers is $\left(\frac{n(n+1)}{2}\right)^{2}$
Proof: Proof by induction on n
$\underline{\text { Basis Step: }} \quad n=1 \quad 1^{3}=\left(\frac{1(1+1)}{2}\right)^{2}$
Inductive Step: Prove

$$
\underbrace{\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}}_{\text {inductive hypothesis }} \Longrightarrow \sum_{i=1}^{n+1} i^{3}=\left(\frac{(n+1)(n+2)}{2}\right)^{2}
$$

