Cardinality

- List Representation of Functions and Cardinality of Finite Sets
 - Properties of Functions as Lists
- Cardinality of Infinite Sets
- Countable and Uncountable Infinite Sets
 - Diagonalization

Imdad ullah Khan

Cardinality of finite sets

Georg Cantor (1874) defined the equivalence of cardinalities of infinite sets

For finite sets X and Y, |X| = |Y| iff there is a bijection $f: X \to Y$

For finite sets X and Y, |X| = |Y| iff there is a bijection $f: X \mapsto Y$

|X| = |Y|, if X and Y can be placed in a **one-to-one correspondence**

A set S is countable if it is either finite or has the same cardinality as $\mathbb N$

S is countable if it can be placed in a **one-to-one correspondence** with $\mathbb N$

S is countable in the following sense

If we count (write, print, list) one element of S per 'second', then any particular element of S will be counted after a finite time

This means we can list element of S like

$$a_1, a_2, a_3, a_4, a_5, \cdots$$

Note: We do not say that the whole set will be printed

A set S is **countable** if it is either finite or has the same cardinality as $\mathbb N$

Are the following sets countable (countably infinite)?

ICP 9-15 | Z

ICP 9-16 $\mathbb O$ and $\mathbb E$, odd and even integers

ICP 9-17 Integer powers of 2

ICP 9-18 Integer powers of other integers

ICP 9-19 Squares, cubes and any power of integers

A set S is **countable** if it is either finite or has the same cardinality as $\mathbb N$

We showed that powers of 2, powers of integers, $\ensuremath{\mathbb{Z}}$ etc. are countable

How about \mathbb{Q}^+ , the set of +ve rational numbers

Rational numbers are very dense

Theorem

Between any two rational numbers there is another rational number

Arrange the positive rational numbers (p/q) in a table, such that row q contains all rationals with denominator q

$\frac{1}{1}$	$\frac{2}{1}$	$\frac{3}{1}$	$\frac{4}{1}$	$\frac{5}{1}$	$\frac{6}{1}$
$\frac{1}{2}$	$\frac{2}{2}$	$\frac{3}{2}$	$\frac{4}{2}$	$\frac{5}{2}$	$\frac{6}{2}$
$\frac{1}{3}$	$\frac{2}{3}$	$\frac{3}{3}$	$\frac{4}{3}$	$\frac{5}{3}$	$\frac{6}{3}$
$\frac{1}{4}$	$\frac{2}{4}$	$\frac{3}{4}$	$\frac{4}{4}$	$\frac{5}{4}$	$\frac{6}{4}$
$\frac{1}{5}$	$\frac{2}{5}$	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{5}{5}$	$\frac{6}{5}$
:	÷	÷	÷	:	:

Counting them row-wise or column wise does not yield countability For instance the number 4/3 is never counted (printed)

$\frac{1}{1}$ —	$\rightarrow \frac{2}{1}$	$\rightarrow \frac{3}{1}$	$\frac{4}{1}$	$\rightarrow \frac{5}{1}$	$\rightarrow \frac{6}{1}$	
$\frac{1}{2}$	$\frac{2}{2}$	$\frac{3}{2}$	$\frac{4}{2}$	$\frac{5}{2}$	$\frac{6}{2}$	
$\frac{1}{3}$	$\frac{2}{3}$	$\frac{3}{3}$	$\frac{4}{3}$	$\frac{5}{3}$	$\frac{6}{3}$	
$\frac{1}{4}$	$\frac{2}{4}$	$\frac{3}{4}$	$\frac{4}{4}$	$\frac{5}{4}$	$\frac{6}{4}$	
$\frac{1}{5}$	$\frac{2}{5}$	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{5}{5}$	$\frac{6}{5}$	
:	:	:	÷	÷	:	

Counting them row-wise or column wise does not yield countability For instance the number 4/3 is never counted (printed)

$\frac{1}{1}$	$\frac{2}{1}$	$\frac{3}{1}$	$\frac{4}{1}$	$\frac{5}{1}$	$\frac{6}{1}$
$\frac{1}{2}$	$\frac{2}{2}$	$\frac{3}{2}$	$\frac{4}{2}$	$\frac{5}{2}$	$\frac{6}{2}$
$\frac{1}{3}$	$\frac{2}{3}$	$\frac{3}{3}$	$\frac{4}{3}$	$\frac{5}{3}$	$\frac{6}{3}$
$\frac{1}{1}$	$\frac{2}{4}$	$\frac{3}{4}$	$\frac{4}{4}$	$\frac{5}{4}$	$\frac{6}{4}$
$\frac{1}{5}$	$\frac{2}{5}$	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{5}{5}$	$\frac{6}{5}$
:	÷	:	:	:	:

Counting them in the dove-tailing fashion shows countability Any number P/q is counted after 'finite'? steps

Are all infinite sets of the same size (countable)?

No

Cantor invented a very important technique,

DIAGNOLIZATION

to show how to find bigger infinity

Uncountable set

The set \mathbb{I} of real numbers between 0 and 1 is not countable

We prove it by contradiction and draw contradiction using 'diagnolization'

Assume that I = [0,1] is countable

Then by definition there exists a bijection $f: \mathbb{N} \mapsto \mathbb{I}$ and we can list the elements of \mathbb{I}

List element of \mathbb{I} in a table form as follows:

The set \mathbb{I} of real numbers between 0 and 1 is not countable

Assume that I = [0,1] is countable

Then there exists a bijection $f: \mathbb{N} \mapsto \mathbb{I}$ \triangleright and we can list/count \mathbb{I}

List elements of \mathbb{I} in a table form as follows:

$$f(1) = r_1 = 0. \ d_{11} \ d_{12} \ d_{13} \ d_{14} \ d_{15} \dots$$

$$f(2) = r_2 = 0. \ d_{21} \ d_{22} \ d_{23} \ d_{24} \ d_{25} \dots$$

$$f(3) = r_3 = 0. \ d_{31} \ d_{32} \ d_{33} \ d_{34} \ d_{35} \dots$$

$$f(4) = r_4 = 0. \ d_{41} \ d_{42} \ d_{43} \ d_{44} \ d_{45} \dots$$

$$f(5) = r_5 = 0. \ d_{51} \ d_{52} \ d_{53} \ d_{54} \ d_{55} \dots$$

L	1	2	3	4	5	• • •
r_1	d_{11}	d_{12}	d_{13}	d ₁₄	d_{15}	
<i>r</i> ₂	d ₂₁	d ₂₂	d ₂₃	d ₂₄	d_{25}	
<i>r</i> ₃	d ₃₁	d ₃₂	d ₃₃	d ₃₄	d ₃₅	
<i>r</i> ₄	d ₄₁	d ₄₂	d ₄₃	d_{44}	d_{45}	
<i>r</i> ₅	d ₅₁	d ₅₂	d ₅₃	d ₅₄	d ₅₅	

L	1	2	3	4	5	• • •
r_1	d_{11}	d_{12}	d ₁₃	d ₁₄	d_{15}	
<i>r</i> ₂	d_{21}	d ₂₂	d ₂₃	d ₂₄	d_{25}	
<i>r</i> ₃	d ₃₁	d ₃₂	d ₃₃	d ₃₄	d ₃₅	
<i>r</i> ₄	d ₄₁	d ₄₂	d ₄₃	d ₄₄	d ₄₅	
<i>r</i> ₅	d ₅₁	d ₅₂	d ₅₃	d ₅₄	d ₅₅	

L	1	2	3	4	5	• • •
r_1	d_{11}					
r_2		d ₂₂				
<i>r</i> ₃			d ₃₃			
<i>r</i> ₄				d ₄₄		
<i>r</i> ₅					d ₅₅	

Construct a new number $S_L \in \mathbb{I} = [0,1], \ S_L = 0. \ C_1, \ C_2, \ C_3, \ C_4, \ C_5, \ \dots$

$$C_i = \begin{cases} 8 & \text{if } d_{ii} = 7 \\ 7 & \text{if } d_{ii} \neq 7 \end{cases}$$

L	1	2	3	4	5	• • •
r_1	$d_{11} \neq C_1$	C_2	<i>C</i> ₃	C ₄	C_5	• • •
<i>r</i> ₂		d ₂₂				
<i>r</i> ₃			d ₃₃			
<i>r</i> ₄				d ₄₄		
<i>r</i> ₅					d ₅₅	

Construct a new number $S_L \in \mathbb{I} = [0,1], \ S_L = 0. \ C_1, \ C_2, \ C_3, \ C_4, \ C_5, \ \dots$

$$C_i = \begin{cases} 8 & \text{if } d_{ii} = 7 \\ 7 & \text{if } d_{ii} \neq 7 \end{cases}$$

$$S_L \neq r_1$$
, \therefore by design $C_1 \neq d_{11}$

 \triangleright different than r_1 in at least 1st digit

L	1	2	3	4	5	• • •
r_1	d_{11}					
<i>r</i> ₂	C_1	$d_{22} \neq C_2$	<i>C</i> ₃	C ₄	C ₅	
<i>r</i> ₃			d ₃₃			
<i>r</i> ₄				d ₄₄		
<i>r</i> ₅					d ₅₅	

Construct a new number $S_L \in \mathbb{I} = [0,1], \ S_L = 0. \ C_1, \ C_2, \ C_3, \ C_4, \ C_5, \ \dots$

$$C_i = \begin{cases} 8 & \text{if } d_{ii} = 7 \\ 7 & \text{if } d_{ii} \neq 7 \end{cases}$$

 $S_L \neq r_2$, : by design $C_2 \neq d_{22}$

 \triangleright different than r_2 in at least 2nd digit

L	1	2	3	4	5	• • •
r_1	d_{11}					
<i>r</i> ₂		d ₂₂				
<i>r</i> ₃	C_1	C_2	$d_{33} \neq C_3$	C ₄	C ₅	
<i>r</i> ₄				d ₄₄		
<i>r</i> ₅					d ₅₅	

Construct a new number $S_L \in \mathbb{I} = [0,1], \ S_L = 0. \ C_1, \ C_2, \ C_3, \ C_4, \ C_5, \ \dots$

$$C_i = \begin{cases} 8 & \text{if } d_{ii} = 7 \\ 7 & \text{if } d_{ii} \neq 7 \end{cases}$$

$$S_L \neq r_3$$
, : by design $C_3 \neq d_{33}$

 \triangleright different than r_3 in at least 3rd digit

L	1	2	3	4	5	• • •
r_1	d_{11}					
r_2		d ₂₂				
<i>r</i> ₃			d ₃₃			
<i>r</i> ₄	C_1	<i>C</i> ₂	<i>C</i> ₃	$d_{44} \neq C_4$	C ₅	
<i>r</i> ₅					d ₅₅	

Construct a new number $S_L \in \mathbb{I} = [0,1], \ S_L = 0. \ C_1, \ C_2, \ C_3, \ C_4, \ C_5, \ \dots$

$$C_i = \begin{cases} 8 & \text{if } d_{ii} = 7 \\ 7 & \text{if } d_{ii} \neq 7 \end{cases}$$

$$S_L \neq r_4$$
, : by design $C_4 \neq d_{44}$

 \triangleright different than r_4 in at least 4th digit

L	1	2	3	4	5	• • •
r_1	d_{11}					
<i>r</i> ₂		d ₂₂				
<i>r</i> ₃			d ₃₃			
<i>r</i> ₄				d ₄₄		
<i>r</i> ₅	<i>C</i> ₁	C_2	<i>C</i> ₃	C ₄	$d_{55} \neq C_5$	

Construct a new number $S_L \in \mathbb{I} = [0,1], \ S_L = 0. \ C_1, \ C_2, \ C_3, \ C_4, \ C_5, \ \dots$

$$C_i = \begin{cases} 8 & \text{if } d_{ii} = 7 \\ 7 & \text{if } d_{ii} \neq 7 \end{cases}$$

 $S_L \neq r_5$, : by design $C_5 \neq d_{55}$

 \triangleright different than r_5 in at least 5th digit

L	1	2	3	4	5	• • •
<i>r</i> ₁	d_{11}					
<i>r</i> ₂		d ₂₂				
<i>r</i> ₃			d ₃₃			
<i>r</i> ₄				d ₄₄		
<i>r</i> ₅	C_1	<i>C</i> ₂	<i>C</i> ₃	C ₄	$d_{55} \neq C_5$	

Construct a new number $S_L \in \mathbb{I} = [0,1], \ S_L = 0. \ C_1, \ C_2, \ C_3, \ C_4, \ C_5, \ \dots$

$$C_i = \begin{cases} 8 & \text{if } d_{ii} = 7 \\ 7 & \text{if } d_{ii} \neq 7 \end{cases}$$

 $S_L \neq r_i$, : by design $C_i \neq d_{ii}$

 \triangleright different than r_i in at least ith digit

The list L is incomplete and the assumed function is not a bijection

The set \mathbb{I} of real numbers between 0 and 1 is not countable

Assume that I = [0,1] is countable

Then there exists a bijection

 $f: \mathbb{N} \mapsto \mathbb{I}$

and we can list/count ${\mathbb I}$

```
r_1 = 0.4653365973230847 \cdots
r_2 = 0.2283691758160085 \cdots
r_3 = 0.2470709451841855 \cdots
r_4 = 0.7974760149589142 \cdots
r_5 = 0.7042107951435447 \cdots
r_6 = 0.3004775241525619 \cdots
r_7 = 0.5337390062326107 \cdots
r_8 = 0.1831822059411461 \cdots
r_9 = 0.0690882743970627 \cdots
r_{10} = 0.7540952087698266 \cdots
r_{11} = 0.6986696148745598 \cdots
r_{12} = 0.6486231101480499 \cdots
r_{13} = 0.1927265701330231 \cdots
r_{14} = 0.6302255117726757 \cdots
r_{15} = 0.1970378555725766 \cdots
r_{16} = 0.3871428845438795\cdots
S_L = 0.7787787778877877 \cdots
```

Uncountable Set

The set \mathbb{I} of real numbers between 0 and 1 is not countable

Thus all infinite sets are not of the same cardinality

There are more than one type of infinities