Discrete Mathematics

Cardinality

■ List Representation of Functions and Cardinality of Finite Sets

- Properties of Functions as Lists

■ Cardinality of Infinite Sets
■ Countable and Uncountable Infinite Sets

- Diagonalization

Imdad ullah Khan

Cardinality of finite sets

- Cardinality of a finite set X is the number of distinct elements in X

■ X and Y have the same cardinality, if $|X|=|Y|$
■ If $f: X \mapsto Y$ is a bijection and X and Y are finite sets, then $|X|=|Y|$

For finite sets X and $Y,|X|=|Y|$ iff there is a bijection $f: X \mapsto Y$

Proof of the if part

$$
\text { "if }|X|=|Y| \text {, then there is a bijection" }
$$

- Fix any ordering on X and Y
- $f\left(x_{i}\right)=y_{i}$ is a bijection

Cardinality of infinite sets

$\mathbb{Z}^{+}=$set of positive integers
$\mathbb{Z}^{-}=$set of negative integers
$\mathbb{Z}^{+}=\{1,2,3,4,5,6,7,8,9,10, \ldots\}$
$\mathbb{Z}^{-}=\{-1,-2,-3,-4,-5,-6,-7,-8,-9,-10, \ldots\}$

Which one is bigger?

Cardinality of infinite sets

$\mathbb{O}=$ set of positive odd integers
$\mathbb{E}=$ set of positive even integers
$\mathbb{O}=\{1,3,5,7,9,11,13,15,17, \ldots\}$
$\mathbb{E}=\{2,4,6,8,10,12,14,16,18, \ldots\}$

Which one is bigger?

Cardinality of infinite sets

$\mathbb{E}=$ set of positive even integers
$\mathbb{N}=$ set of natural numbers
$\mathbb{N}=\{1,2,3,4,5,6,7,8,9,10,11,12,13 \ldots\}$
$\mathbb{E}=\{2,4,6,8,10,12,14,16,18,20,22,24,26, \ldots\}$
$\mathbb{E} \subset \mathbb{N}$

Which one is bigger?

Cardinality of infinite sets

$\mathbb{N}=$ set of natural numbers
$\mathbb{S}=$ set of perfect squares

$$
\begin{aligned}
& \mathbb{N}=\{1,2,3,4,5,6,7,8,9,10,11,12,13 \ldots\} \\
& \mathbb{S}=\{1,4,9,16,25,36,49,64,81,100,121,144,169 \ldots\}
\end{aligned}
$$

$\mathbb{S} \subset \mathbb{N}$

Which one is bigger?

Cardinality of infinite sets

$\mathbb{N}=$ set of natural numbers
$\mathbb{C}=$ set of perfect cubes
$\mathbb{N}=\{1,2,3,4,5,6,7,8,9,10,11, \ldots\}$
$\mathbb{C}=\{1,8,27,64,125,216,343,512,729,1000,1331 \ldots\}$
$\mathbb{C} \subset \mathbb{N}$

Which one is bigger?

Cardinality of infinite sets

$\mathbb{N}=$ set of natural numbers
$\mathbb{X}=$ set of powers of 2
$\mathbb{N}=\{1,2,3,4,5,6,7,8,9,10,11,12, \ldots\}$
$\mathbb{X}=\{2,4,8,16,32,64,128,256,512,1024,2048, \ldots\}$
$\mathbb{X} \subset \mathbb{N}$

Which one is bigger?

Cardinality of finite sets

For finite sets X and $Y,|X|=|Y|$ iff there is a bijection $f: X \mapsto Y$

Georg Cantor (1874) defined the equivalence of cardinalities of infinite sets

For finite sets X and $Y,|X|=|Y|$ iff there is a bijection $f: X \mapsto Y$

$$
|X|=|Y| \text {, if } X \text { and } Y \text { can be placed in a one-to-one correspondence }
$$

Cardinality of infinite sets

$$
\begin{aligned}
& \mathbb{Z}^{+}=\text {positive integers } \quad \mathbb{Z}^{-}=\text {negative integers } \\
& \mathbb{Z}^{+}=\{1,2,3,4,5,6,7,8,9,10, \ldots\} \\
& \mathbb{Z}^{-}=\{-1,-2,-3,-4,-5,-6,-7,-8,-9,-10, \ldots\}
\end{aligned}
$$

\mathbb{Z}^{+}	\mathbb{Z}^{-}	\mathbb{Z}^{-}
1	-1	$-(1)$
2	-2	$-(2)$
3	-3	$-(3)$
4	-4	$-(4)$
5	-5	$-(5)$
6	-6	$-(6)$
7	-7	$-(7)$
8	-8	$-(8)$
9	-9	$-(9)$

ICP 9-9 Design a bijection $f: \mathbb{Z}^{+} \mapsto \mathbb{Z}^{-}$

Cardinality of infinite sets

$\mathbb{O}=$ positive odd integers
$\mathbb{E}=$ positive even integers
$\mathbb{O}=\{1,3,5,7,9,11,13,15,17, \ldots\}$
$\mathbb{E}=\{2,4,6,8,10,12,14,16,18, \ldots\}$

\mathbb{O}	\mathbb{E}	\mathbb{E}
1	2	$1+1$
3	4	$3+1$
5	6	$5+1$
7	8	$7+1$
9	10	$9+1$
11	12	$11+1$
13	14	$13+1$
15	16	$15+1$
17	18	$17+1$

ICP 9-10 Design a bijection $f: \mathbb{O} \mapsto \mathbb{E}$
$f(x)=x+1$
$|\mathbb{O}|=|\mathbb{E}|$

Cardinality of infinite sets

$\mathbb{N}=$ natural numbers. $\quad \mathbb{E}=$ set of + ve even integers
$\mathbb{N}=\{1,2,3,4,5,6,7,8,9,10,11 \ldots\}$
$\mathbb{E}=\{2,4,6,8,10,12,14,16,18,20,22,24,26, \ldots\}$

\mathbb{N}	\mathbb{E}	\mathbb{E}
1	2	$2(1)$
2	4	$2(2)$
3	6	$2(3)$
4	8	$2(4)$
5	10	$2(5)$
6	12	$2(6)$
7	14	$2(7)$
8	16	$2(8)$
9	18	$2(9)$

$\mathbb{E} \subset \mathbb{N}$
ICP 9-11 Design a bijection $f: \mathbb{N} \mapsto \mathbb{E}$

$$
\begin{aligned}
& f(x)=2(x) \\
& |\mathbb{N}|=|\mathbb{E}|
\end{aligned}
$$

Cardinality of infinite sets

$\mathbb{N}=$ set of natural numbers

$\mathbb{S}=$ set of perfect squares

$$
\begin{aligned}
& \mathbb{N}=\{1,2,3,4,5,6,7,8,9,10,11 \ldots\} \\
& \mathbb{S}=\{1,4,9,16,25,36,49,64,81,100,121, \ldots\}
\end{aligned}
$$

\mathbb{N}	\mathbb{S}	\mathbb{S}
1	1	1^{2}
2	4	2^{2}
3	9	3^{2}
4	16	4^{2}
5	25	5^{2}
6	36	6^{2}
7	49	7^{2}
8	64	8^{2}
9	81	9^{2}

$\mathbb{S} \subset \mathbb{N}$

ICP 9-12 Design a bijection $f: \mathbb{N} \mapsto \mathbb{S}$

$$
f(x)=x^{2}
$$

$$
|\mathbb{N}|=|\mathbb{S}|
$$

Cardinality of infinite sets

$\mathbb{N}=$ set of natural numbers

$\mathbb{C}=$ set of perfect cubes

$\mathbb{N}=\{1,2,3,4,5,6,7,8,9,10, \ldots\}$
$\mathbb{C}=\{1,8,27,64,125,216,343,512,729,1000 \ldots\}$

\mathbb{N}	\mathbb{C}	\mathbb{C}	
1	1	1^{3}	$\mathbb{C} \subset \mathbb{N}$
2	8	2^{3}	
3	27	3^{3}	
4	64	4^{3}	
5	125	5^{3}	$f(x)=x^{3}$
6	216	6^{3}	$\|\mathbb{N}\|=\|\mathbb{C}\|$
7	343	7^{3}	
8	512	8^{3}	
9	729	9^{3}	

Cardinality of infinite sets

$\mathbb{N}=$ set of natural numbers $\quad \mathbb{X}=$ set of powers of 2
$\mathbb{N}=\{1,2,3,4,5,6,7,8,9,10,11,12, \ldots\}$
$\mathbb{X}=\{2,4,8,16,32,64,128,256,512,1024,2048, \ldots\}$

\mathbb{N}	\mathbb{X}	\mathbb{X}
1	2	2^{1}
2	4	2^{2}
3	8	2^{3}
4	16	2^{4}
5	32	2^{5}
6	64	2^{6}
7	128	2^{7}
8	256	2^{8}
9	512	2^{9}
10	1024	2^{10}

$\mathbb{X} \subset \mathbb{N}$
ICP 9-14 $f: \mathbb{N} \mapsto \mathbb{X}$
$f(x)=2^{x}$
$|\mathbb{N}|=|\mathbb{X}|$

Cardinality of infinite sets

We showed that
■ |integer powers of 2 and other integers $|=|\mathbb{N}|$

- |powers of all integers $|=|\mathbb{N}|$

■ $|\mathbb{Z}|=|\mathbb{N}|$
"size/2 = size". Surprised!

I see it, but I don't believe it!
George Cantor (in a letter to Dedekind, 1877)

This notion of cardinality enables us to reason about infinity

Cardinality of infinite sets

It does make some sense though!

$$
\begin{aligned}
& \infty+1=\infty \\
& \infty \pm \text { finite number }=\infty \\
& 2 \cdot \infty=\infty \\
& \infty \cdot \text { finite number }=\infty \\
& \infty / 2=\infty \\
& \frac{\infty}{\text { finite number }}=\infty
\end{aligned}
$$

