Cardinality

List Representation of Functions and Cardinality of Finite Sets

- Properties of Functions as Lists
- Cardinality of Infinite Sets
- Countable and Uncountable Infinite Sets
 - Diagonalization

Imdad ullah Khan

- Cardinality of a finite set X is the number of distinct elements in X
- X and Y have the same cardinality, if |X| = |Y|
- If $f: X \mapsto Y$ is a bijection and X and Y are finite sets, then |X| = |Y|

For finite sets X and Y, |X| = |Y| iff there is a bijection $f : X \mapsto Y$

Proof of the if part

"if
$$|X| = |Y|$$
, then there is a bijection"

Fix any ordering on X and Y

• $f(x_i) = y_i$ is a bijection

- $\mathbb{Z}^+ = \mathsf{set}$ of positive integers
- $\mathbb{Z}^- = \mathsf{set}$ of negative integers

$$\begin{split} \mathbb{Z}^+ &= \{1,2,3,4,5,6,7,8,9,10,\ldots\} \\ \mathbb{Z}^- &= \{-1,-2,-3,-4,-5,-6,-7,-8,-9,-10,\ldots\} \end{split}$$

- $\mathbb{O}=\mathsf{set}$ of positive odd integers
- $\mathbb{E}=\mathsf{set}$ of positive even integers

 $\mathbb{O} = \{1, 3, 5, 7, 9, 11, 13, 15, 17, \ldots\}$ $\mathbb{E} = \{2, 4, 6, 8, 10, 12, 14, 16, 18, \ldots\}$

- $\mathbb{E}=\mathsf{set}$ of positive even integers
- $\mathbb{N}=\mathsf{set}$ of natural numbers

 $\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 \ldots\}$

 $\mathbb{E} = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, \ldots\}$

 $\mathbb{E}\subset\mathbb{N}$

- $\mathbb{N}=\mathsf{set}$ of natural numbers
- $\mathbb{S}=\mathsf{set}$ of perfect squares

 $\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 \ldots\}$

 $\mathbb{S} = \{1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169 \dots\}$

 $\mathbb{S}\subset\mathbb{N}$

- $\mathbb{N}=\mathsf{set}$ of natural numbers
- $\mathbb{C}=\mathsf{set}$ of perfect cubes

 $\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, \ldots\}$

 $\mathbb{C} = \{1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331 \dots\}$

 $\mathbb{C}\subset\mathbb{N}$

- $\mathbb{N}=\mathsf{set}$ of natural numbers
- $\mathbb{X}=\mathsf{set}$ of powers of 2

 $\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, \ldots\}$

 $\mathbb{X} = \{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, \ldots\}$

 $\mathbb{X} \subset \mathbb{N}$

For finite sets X and Y, |X| = |Y| iff there is a bijection $f : X \mapsto Y$

Georg Cantor (1874) defined the equivalence of cardinalities of infinite sets

For finite sets X and Y, |X| = |Y| iff there is a bijection $f : X \mapsto Y$

|X| = |Y|, if X and Y can be placed in a **one-to-one correspondence**

 $\mathbb{Z}^{+} = \text{positive integers} \qquad \mathbb{Z}^{-} = \text{negative integers}$ $\mathbb{Z}^{+} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ldots\}$ $\mathbb{Z}^{-} = \{-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, \ldots\}$

 $\mathbb{E} = \mathsf{positive} \mathsf{ even} \mathsf{ integers}$

\mathbb{O}	$ \mathbb{E}$	$\mathbb E$	
1	2	1 + 1	ICP 9-10 Design a bijection $f : \mathbb{O} \mapsto \mathbb{E}$
3	4	3 + 1	
5	6	5 + 1	f(y) - y + 1
7	8	7 + 1	r(x) = x + 1
9	10	9 + 1	$ \mathbb{O} = \mathbb{E} $
11	12	11 + 1	
13	14	13 + 1	
15	16	15 + 1	
17	18	17 + 1	

 $\mathbb{N} = \text{natural numbers.} \quad \mathbb{E} = \text{set of } + \text{ve even integers}$ $\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 \dots\}$ $\mathbb{E} = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, \dots\}$

\mathbb{N}	$ \mathbb{E}$	$\mathbb E$	
1	2	2(1)	$\mathbb{E}\subset\mathbb{N}$
2	4	2(2)	ICP 9-11 Design a bijection $f : \mathbb{N} \mapsto \mathbb{E}$
3	6	2(3)	
4	8	2(4)	$f(\mathbf{x}) = 2(\mathbf{x})$
5	10	2(5)	$\Gamma(\lambda) = Z(\lambda)$
6	12	2(6)	$ \mathbb{N} = \mathbb{E} $
7	14	2(7)	
8	16	2(8)	
9	18	2(9)	

$\mathbb{N} = set of natural numbers$				nbers $\mathbb{S} = \text{set of perfect squares}$
$\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 10, 1, 2, 3, 4, 5, 6, 7, 8, 10, 1, 2, 10, 1, 10, 1, 10, 1, 10, 10, 10, 10, 1$				3, 9, 10, 11 }
$\mathbb{S} = \{1$,4,9	, 16, 2	25, 36,	49, 64, 81, 100, 121, }
	\mathbb{N}	S	S	
	1	1	12	$\mathbb{S}\subset\mathbb{N}$
	2	4	2 ²	ICP 9-12 Design a bijection $f : \mathbb{N} \mapsto \mathbb{S}$
	3	9	3 ²	
	4	16	4 ²	$f(x) - x^2$
	5	25	5 ²	$\Gamma(\Lambda) = \Lambda$
	6	36	6 ²	$ \mathbb{N} = \mathbb{S} $
	7	49	7 ²	
	8	64	8 ²	
	9	81	9 ²	

$$\label{eq:matrix} \begin{split} \mathbb{N} &= \mathsf{set of natural numbers} \\ \mathbb{N} &= \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ldots\} \\ \mathbb{C} &= \{1, 8, 27, 64, 125, 216, 343, 512, 729, 1000 \ldots\} \end{split}$$

\mathbb{N}	$ $ \mathbb{C}	\mathbb{C}	
1	1	1 ³	$\mathbb{C}\subset\mathbb{N}$
2	8	2 ³	ICP 9-13 $f : \mathbb{N} \mapsto \mathbb{C}$
3	27	3 ³	
4	64	4 ³	$f(x) - x^3$
5	125	5 ³	r(x) = x
6	216	6 ³	$ \mathbb{N} = \mathbb{C} $
7	343	7 ³	
8	512	8 ³	
Q	720	Q3	

 $\mathbb{N} = \text{set of natural numbers} \qquad \mathbb{X} = \text{set of powers of 2}$ $\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, \ldots\}$ $\mathbb{X} = \{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, \ldots\}$

\mathbb{N}	X	\mathbb{X}	
1	2	2 ¹	$X \subset \mathbb{N}$
2	4	2 ²	ICP 9-14 $f : \mathbb{N} \mapsto \mathbb{X}$
3	8	2 ³	
4	16	2 ⁴	$f(\mathbf{x}) = 2^{\mathbf{x}}$
5	32	2 ⁵	$\Gamma(X) = 2$
6	64	2 ⁶	$ \mathbb{N} = \mathbb{X} $
7	128	2 ⁷	
8	256	2 ⁸	
9	512	2 ⁹	
10	1024	2^{10}	

-

We showed that

- $|integer powers of 2 and other integers| = |\mathbb{N}|$
- |powers of all integers| = $|\mathbb{N}|$
- $\bullet \ |\mathbb{Z}| = |\mathbb{N}|$
- "size/2 = size". Surprised!

I see it, but I don't believe it!

George Cantor (in a letter to Dedekind, 1877)

This notion of cardinality enables us to reason about infinity

It does make some sense though!

 $\infty + 1 = \infty$

 $\infty\pm {\rm finite\ number\ }=\infty$

 $2\cdot\infty=\infty$

 $\infty \cdot \mathsf{finite} \ \mathsf{number} \ = \infty$

 $\infty/2 = \infty$

 $\frac{\infty}{\mathsf{finite number}} = \infty$