Cardinality

List Representation of Functions and Cardinality of Finite Sets

- Properties of Functions as Lists
- Cardinality of Infinite Sets
- Countable and Uncountable Infinite Sets
 - Diagonalization

Imdad ullah Khan

Function

Let X and Y be two sets. A function f maps **each** element of X to **exactly one** element of Y

Let $f: X \mapsto Y$ and let f(x) = y

- X is the domain of f
- Y is the codomain of f
- y is the image of x
- x is the pre-image of y
- **Range of** f: set of images of every $x \in X$

Let X and Y be two sets. A function f maps **each** element of X to **exactly one** element of Y

Let X be the domain with its <u>elements ordered</u> $x_1, x_2 \dots$,

 $f: X \mapsto Y$ can be represented as a list $f(x_1), f(x_2), f(x_3), \ldots$

Images of x_1, x_2, \ldots listed in the order of X

Function: List Representation

Xį	$f(\cdot)$
<i>x</i> ₁	С
<i>x</i> ₂	A
X3	В
X4	В
X_5	A

Properties of functions as lists

A function $f : X \mapsto Y$ is **one-to-one** (or **injective**) iff $\forall x_1, x_2 \in X \quad (f(x_1) = f(x_2) \rightarrow x_1 = x_2)$

- Every element $x \in X$ is mapped to a unique element of Y
- Images are unique

 $f: X \mapsto Y$ is **one-to-one** if there are no duplicates in the list

Every element of Y appears at most once

▷ No element of codomain is repeated

Properties of functions as lists

ICP 9-1 Suppose X and Y are two finite sets.

Let $f : X \mapsto Y$ be a one-to-one function.

What can we conclude about the cardinalities of X and Y?

 $|X| \bigcirc |Y|$

A function $f : X \mapsto Y$ is **onto** (or **surjective**) iff for every element $y \in Y$ there is an element $x \in X$ with f(x) = y

- Every element $y \in Y$ is assigned to some element of $x \in X$
- Every $y \in Y$ is the image of at least one $x \in X$

 $f: X \mapsto Y$ is **onto** if every element in Y appears in the list

Every element of Y appear in the list at least once

▷ No element of codomain is missing

Properties of functions as lists

ICP 9-2 Suppose X and Y are two finite sets.

Let $f : X \mapsto Y$ be an onto function.

What can we conclude about the cardinalities of X and Y?

 $|X| \bigcirc |Y|$

A function $f : X \mapsto Y$ is one-to-one correspondence (or bijective) iff it is both one-to-one and onto

 $f: X \mapsto Y$ is a bijection if every $y \in Y$ appears exactly once

If $f: X \mapsto Y$ is a bijection and X and Y are finite sets, then |X| = |Y|

Let $f: X \mapsto Y$ be represented as list

 $f: X \mapsto Y$ is **one-to-one** if every $y \in Y$ appears <u>at most once</u> in the list

 $f: X \mapsto Y$ is **onto** if every $y \in Y$ appears <u>at least once</u> in the list

 $f: X \mapsto Y$ is **bijection** if every $y \in Y$ appears exactly once in the list

If $f: X \mapsto Y$ is a bijection and X and Y are finite sets, then |X| = |Y|

ICP 9-3

Given $f : A \rightarrow B$, and |B| > |A|. Explain why f cannot be a bijection.

ICP 9-4

Given $f : A \rightarrow B$, and |B| < |A|. Explain why f cannot be a bijection.

ICP 9-5

Given $f : A \rightarrow B$, and |B| = |A|. Does f have to be bijection?

Cardinality of finite sets

- Cardinality of a finite set X is the number of distinct elements in X
- X and Y have the same cardinality, if |X| = |Y|
- If $f: X \mapsto Y$ is a bijection and X and Y are finite sets, then |X| = |Y|

For finite sets X and Y, |X| = |Y| iff there is a bijection $f : X \mapsto Y$

Proof of the if part

"if
$$|X| = |Y|$$
, then there is a bijection"

Fix any ordering on X and Y

• $f(x_i) = y_i$ is a bijection

Cardinality of finite sets

For finite sets X and Y, |X| = |Y| iff there is a bijection $f : X \mapsto Y$

$$X = \{apple, 20, banana\}$$
$$Y = \{a, b, c\}$$

 $X = \{1, 2, 3, 4, 5\}$ $Y = \{a, b, c, d, e\}$

apple	С
20	b
banana	а

1	а
2	b
3	С
4	d
5	е

The power set

- Let A be a set such that |A| = n
- Impose any ordering on elements of A
- Represent subsets of A by n-bit strings (bit-vector representation)
- Each bit stands for whether the corresponding element is in the subset

ICP 9-6 How many *n*-bits strings are there?

ICP 9-7 How many subsets of the set *A* are there?

ICP 9-8 Design a bijection between the set of n-bits strings and the power set of A.

Cardinality of finite sets

For finite sets X and Y, |X| = |Y| iff there is a bijection $f : X \mapsto Y$

 $X = \{1, 2, 3, 4, 5, 6\}$ $Y = \{a, b, c, d, e\}$

In any $f: X \mapsto Y$

- some $y \in Y$ must repeat
- *f* cannot be one-to-one
- No bijection between X and Y

• so $|X| \neq |Y|$

 $X = \{1, 2, 3, 4, 5, 6\}$ $Y = \{a, b, c, d, e, f, g\}$

In any $f: X \mapsto Y$

- some $y \in Y$ must be missing
- f cannot be onto
- No bijection between X and Y
- so $|X| \neq |Y|$