Discrete Mathematics

Cardinality

■ List Representation of Functions and Cardinality of Finite Sets

- Properties of Functions as Lists
- Cardinality of Infinite Sets

■ Countable and Uncountable Infinite Sets

- Diagonalization

Imdad ullah Khan

Function

Let X and Y be two sets. A function f maps each element of X to exactly one element of Y

$$
\text { Let } f: X \mapsto Y \text { and let } f(x)=y
$$

- X is the domain of f
- Y is the codomain of f
- y is the image of x
- x is the pre-image of y
- Range of f : set of images of every $x \in X$

Function: List Representation

Let X and Y be two sets. A function f maps each element of X to exactly one element of Y

Let X be the domain with its elements ordered $x_{1}, x_{2} \ldots$,
$f: X \mapsto Y$ can be represented as a list $\quad f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right), \ldots$

■ Images of x_{1}, x_{2}, \ldots listed in the order of X

Function: List Representation

x_{i}	$f(\cdot)$
x_{1}	F
x_{2}	F
x_{3}	F
x_{4}	F
x_{5}	F

x_{i}	$f(\cdot)$
x_{1}	C
x_{2}	A
x_{3}	B
x_{4}	B
x_{5}	A

Properties of functions as lists

A function $f: X \mapsto Y$ is one-to-one (or injective) iff

$$
\forall x_{1}, x_{2} \in X \quad\left(f\left(x_{1}\right)=f\left(x_{2}\right) \rightarrow x_{1}=x_{2}\right)
$$

■ Every element $x \in X$ is mapped to a unique element of Y

- Images are unique
$f: X \mapsto Y$ is one-to-one if there are no duplicates in the list

Every element of Y appears at most once
\triangleright No element of codomain is repeated

Properties of functions as lists

ICP 9-1 Suppose X and Y are two finite sets.
Let $f: X \mapsto Y$ be a one-to-one function.
What can we conclude about the cardinalities of X and Y ?

$$
|X| ?|Y|
$$

Properties of functions as lists

A function $f: X \mapsto Y$ is onto (or surjective) iff
for every element $y \in Y$ there is an element $x \in X$ with $f(x)=y$

- Every element $y \in Y$ is assigned to some element of $x \in X$
- Every $y \in Y$ is the image of at least one $x \in X$

$$
f: X \mapsto Y \text { is onto if every element in } Y \text { appears in the list }
$$

Every element of Y appear in the list at least once
\triangleright No element of codomain is missing

Properties of functions as lists

ICP 9-2 Suppose X and Y are two finite sets.
Let $f: X \mapsto Y$ be an onto function.
What can we conclude about the cardinalities of X and Y ?

$$
|X| ?|Y|
$$

Properties of functions as lists

A function $f: X \mapsto Y$ is one-to-one correspondence (or bijective) iff it is both one-to-one and onto
$f: X \mapsto Y$ is a bijection if every $y \in Y$ appears exactly once

Every $y \in Y$ appears $\underbrace{\text { at most once }}_{\text {one-to-one }}$ and $\underbrace{\text { at least once }}_{\text {onto }}$ in the list

If $f: X \mapsto Y$ is a bijection and X and Y are finite sets, then $|X|=|Y|$

Properties of functions as lists

Let $f: X \mapsto Y$ be represented as list
$f: X \mapsto Y$ is one-to-one if every $y \in Y$ appears at most once in the list
$f: X \mapsto Y$ is onto if every $y \in Y$ appears at least once in the list
$f: X \mapsto Y$ is bijection if every $y \in Y$ appears exactly once in the list If $f: X \mapsto Y$ is a bijection and X and Y are finite sets, then $|X|=|Y|$

Properties of functions as lists

ICP 9-3

Given $f: A \rightarrow B$, and $|B|>|A|$. Explain why f cannot be a bijection.

ICP 9-4

Given $f: A \rightarrow B$, and $|B|<|A|$. Explain why f cannot be a bijection.

ICP 9-5

Given $f: A \rightarrow B$, and $|B|=|A|$. Does f have to be bijection?

Cardinality of finite sets

- Cardinality of a finite set X is the number of distinct elements in X

■ X and Y have the same cardinality, if $|X|=|Y|$
■ If $f: X \mapsto Y$ is a bijection and X and Y are finite sets, then $|X|=|Y|$

For finite sets X and $Y,|X|=|Y|$ iff there is a bijection $f: X \mapsto Y$

Proof of the if part

$$
\text { "if }|X|=|Y| \text {, then there is a bijection" }
$$

- Fix any ordering on X and Y
- $f\left(x_{i}\right)=y_{i}$ is a bijection

Cardinality of finite sets

For finite sets X and $Y,|X|=|Y|$ iff there is a bijection $f: X \mapsto Y$

$$
\begin{array}{rl}
X=\{\text { apple, 20, banana }\} & X=\{1,2,3,4,5\} \\
Y=\{a, b, c\} & Y=\{a, b, c, d, e\} \\
& \\
\hline \text { apple } & c \\
\hline 20 & b \\
\hline \text { banana } & a \\
\hline
\end{array}
$$

The power set

- Let A be a set such that $|A|=n$
- Impose any ordering on elements of A

■ Represent subsets of A by n-bit strings (bit-vector representation)

- Each bit stands for whether the corresponding element is in the subset

ICP 9-6 How many n-bits strings are there?

ICP 9-7 How many subsets of the set A are there?

ICP 9-8 Design a bijection between the set of n-bits strings and the power set of A.

Cardinality of finite sets

For finite sets X and $Y,|X|=|Y|$ iff there is a bijection $f: X \mapsto Y$
$X=\{1,2,3,4,5,6\}$
$Y=\{a, b, c, d, e\}$

In any $f: X \mapsto Y$
■ some $y \in Y$ must repeat

- f cannot be one-to-one
- No bijection between X and Y
- so $|X| \neq|Y|$
$X=\{1,2,3,4,5,6\}$
$Y=\{a, b, c, d, e, f, g\}$
In any $f: X \mapsto Y$
■ some $y \in Y$ must be missing
- f cannot be onto
- No bijection between X and Y

■ so $|X| \neq|Y|$

