Discrete Mathematics

Proofs

■ Proofs: Terminology and Rules of Inference

- Direct Proof

■ Proof by Contrapositive

- Proof by Contradiction

■ Proofs using Case Analysis

Imdad ullah Khan

Proof

An argument that convincingly demonstrates the truth of a statement

In mathematics,
A proof is a chain of logical deductions that demonstrates the truth of a proposition assuming the truth of some known axioms

- Direct proof to prove $P \rightarrow Q$
- Assume P is true, with a chain of logical deductions conclude that Q is true
- Proof by contrapositive to prove $P \rightarrow Q$
- Give a direct proof of $\neg Q \rightarrow \neg P$
- Proof by contradiction to prove P
- Assume $\neg P$, with a chain of logical deductions draw a contradiction

Proofs using Case Analysis

Proof using case analysis is not a proof method as such

- Break up complicated proof into cases
- Deal with each case separately (applying either of the methods above)

■ Must cover all cases

Proof using Case Analysis

Prove that The square of any real number is non-negative

Proof:

Any real number must satisfy one of these three cases
Case 1: $x=0, \quad x^{2}=0$ (non-negative)
Case 2: $x>0, \quad x^{2}>0$ (non-negative)
Case 3: $x<0, \quad x^{2}>0$ (non-negative)

We conclude that in all possible cases $x^{2} \geq 0$ \square

Proof usingCase Analysis

ICP 8-10 Prove that the sum of two positive integers of the same parity (odd/even) is even.

Proof: Let x and y be the two positive integers (summands)
Case 1: Both x and y are even
$x=2 a \quad y=2 b \quad$ for $a, b \in \mathbb{Z}$
$x+y=?$

Case 2: Both x and y are odd
$x=2 a+1 \quad y=2 b+1 \quad$ for $a, b \in \mathbb{Z}$
$x+y=?$

Proof using Case Analysis

Prove that Every even perfect square is divisible by 4

Proof:

Let x be an even integer and a perfect square
Suppose x is not divisible by 4 , then x must satisfy one of three cases
Case 1: $x=4 k+1, \Longrightarrow x$ is odd
\triangleright a contradiction to assumption that x is even
Case 2: $x=4 k+2, \Longrightarrow x=y^{2}$ is even, y is even, $y=2 a$ So $x=(2 a)^{2}=4 a^{2}$, hence 4 divides x
\triangleright a contradiction to assumption that x is not divisible by 4
Case 3: $x=4 k+3 \Longrightarrow x$ is odd
\triangleright a contradiction to assumption that x is even

Proofs by Case Analysis

ICP 8-11 Prove that if x and y are real numbers, then $\max \{x, y\}+\min \{x, y\}=x+y$.

Proof:

Case 1: $x>y \Longrightarrow \max \{x, y\}=x \quad \min \{x, y\}=y$
Case 2: $x<y \Longrightarrow \max \{x, y\}=y \quad \min \{x, y\}=x$
Case 3: $x=y \Longrightarrow \max \{x, y\}=x \quad \min \{x, y\}=x$

Proof using Case Analysis

Given any two persons they are either friends or they are strangers

Theorem

Every collection of 6 people contains a group of 3 friends or a group of 3 strangers

Let $\{a, b, c, d, e, f\}$ be an arbitrary collection of 6 people

Proof using Case Analysis

Theorem

Every collection of 6 people contains a group of 3 friends or a group of 3 strangers

Consider a (fixed) person a
Case 1: Among the remaining there are ≥ 3 people who are all friends with a
Case 2: Among the remaining there are ≥ 3 people who are all strangers to a

One of these two cases must happen

Proof using Case Analysis

Theorem

Every collection of 6 people contains a group of 3 friends or a group of 3 strangers

Case 1: Among the remaining there are ≥ 3 people who are all friends with a
Case 1.1:
Among the ≥ 3 friends of a there are two who are friends with each other

Case 1.2:
All the ≥ 3 friends of a are strangers to each other

All subcases covered

Proof using Case Analysis

Theorem

Every collection of 6 people contains a group of 3 friends or a group of 3 strangers

Case 2: Among the remaining there are ≥ 3 people who are all strangers to a
Case 2.1:
Among the ≥ 3 strangers to a there are two who are strangers to each other

Case 2.2: All the ≥ 3 strangers to a are friends with each other

Proofs by Case Analysis

ICP 8-12 Prove that if x and y are real numbers, then $|x|+|y| \geq|x+y|$.

Proof: Without loss of generality assume $x \geq y \quad \triangleright$ if not rename them

Case 1: $y \geq 0 \Longrightarrow x>0$

Case 2: $y<0 \quad x \geq 0$
Case 3: $x<0 \Longrightarrow y<0$

