Discrete Mathematics

Proofs

- Proofs: Terminology and Rules of Inference
- Direct Proof

■ Proof by Contrapositive

- Proof by Contradiction
- Proofs using Case Analysis

Imdad ullah Khan

Proof

An argument that convincingly demonstrates the truth of a statement

In mathematics,
A proof is a chain of logical deductions that demonstrates the truth of a proposition assuming the truth of some known axioms

- Direct proof to prove $P \rightarrow Q$
- Assume P is true, with a chain of logical deductions conclude that Q is true

■ Proof by contrapositive to prove $P \rightarrow Q$

- Give a direct proof of $\neg Q \rightarrow \neg P$

Proof by Contradiction

Suppose we want to prove some statement P to be true In proof by contradiction we argue that
if P is not true, then some contradiction must occur
1 Assume that P is false
2 Show that from this $(\neg P)$ we can logically deduce some contradiction
The contradiction can be to

- the assumption $\neg P$
- implying both P and $\neg P$ are simultaneously true, a contradiction
- or to some known true statement S
- implying S is false, meaning both S and $\neg S$ are simultaneously true

Proof by Contradiction

Prove that Square of an even integer is even

Implication Form

Prove that If x is an even integer, then x^{2} is even

Proof:

Assume that for an even x, x^{2} is odd \triangleright negation of given implication
Let $x^{2}=2 k+1 \Longrightarrow x^{2}-1=2 k \quad \triangleright$ definition of odd integers
$\Longrightarrow(x+1)(x-1)=2 k$
$(x-1)$ and $(x+1)$ are either both odd or both even
They have to be even for their product to be even
so x must be odd, a contradiction to our assumption, that x is even

Proof by Contradiction

Prove that If $a+b>7$, then $a>3$ or $b>4$

Proof:

Let $a+b>7$
We want to show that either $a>3$ or $b>4$
Assume the contrary, $a \leq 3 \wedge b \leq 4 \quad$ negation of the implication
Add these two inequalities we get
$a+b \leq 3+4=7$
This contradicts our assumption that $a+b>7$

Proofs by Contradiction

ICP 8-8 Prove that there exist no integers a and b for which $21 a+30 b=1$ pause

Proof:

Suppose there exists $a, b \in \mathbb{Z}$ such that $21 a+30 b=1 \Longrightarrow 3(7 a+10 b)=1$
$7 a+10 b \in \mathbb{Z} \quad \Longrightarrow 3 \mid 1$

Proof by Contradiction

Prove that $\quad \sqrt{2}$ is irrational

We will need one of the following two results
Lemma 1
If n is even, then n^{2} is also even

Lemma 2
If n is odd, then n^{2} is also odd

Proof by Contradiction

Prove that $\quad \sqrt{2}$ is irrational

Proof: Assume that $\sqrt{2}$ is rational \triangleright for the sake of contradiction

$$
\text { i.e. } \quad \sqrt{2}=p / q \quad p, q \in \mathbb{Z}, \quad q \neq 0
$$

Suppose p and q have no common factors \triangleright e.g. cancel any common factors

$$
2=p^{2} / q^{2} \Longrightarrow p^{2}=2 q^{2} \quad \triangleright \text { square both sides }
$$

- So p^{2} is even and p is even $\quad \triangleright$ ICP 8-6 By Lemma ?

■ Let $p=2 k$, then $p^{2}=4 k^{2}=2 q^{2} \Longrightarrow 2 k^{2}=q^{2}$
■ Hence q^{2} is even, so q is even

Irrational Numbers

credit: https://www.boredpanda.com/

Proofs by Contradiction

ICP 8-7 Prove that the sum of any rational number and any irrational number is an irrational number

Proof:

Assume not

Suppose some rational number p / q and an irrational number r adds up to a rational number a / b

$$
r+\frac{p}{q}=\frac{a}{b}
$$

What can we say about r ?
\triangleright Recall the theorem on sum of two rational numbers.

Proof by Contradiction

Prove that There are infinitely many prime numbers

Give a try to proving it using Direct Proof! or a Proof by Contrapositive!
We use the following two lemmas for proving this theorem
Lemma 1
If $x \geq 2$ and x divides y, then x does not divide $y+1$

Proof by contradiction; it implies that x divides 1

Lemma 2

Every number x has a prime divisor
Proof by Induction next week

Proof by Contradiction

Prove that There are infinitely many prime numbers

Proof: Assume (the contrary) that there are finitely many primes, say

$$
p_{1}, p_{2}, \ldots, p_{n}
$$

■ Let $S=\left(p_{1} p_{2} \ldots p_{n}\right)+1$

- product of 'ALL' primes plus 1
- S is larger than all primes, hence can't be prime
- By Lemma 2, S has a prime divisor p
- This p must be (in the list)
- By construction, p divides $S-1$

Thus, p divides both S and $S-1$, a contradiction to Lemma 1!

Proof by Contradiction

Reductio ad absurdum, which Euclid loved so much, is one of a mathematician's finest weapons. It is a far finer gambit than any chess play: a chess player may offer the sacrifice of a pawn or even a piece, but a mathematician offers the game
G.H. Hardy, A Mathematician's Apology

