Discrete Mathematics

Proofs

■ Proofs: Terminology and Rules of Inference

- Direct Proof

■ Proof by Contrapositive

- Proof by Contradiction
- Proofs using Case Analysis

Imdad ullah Khan

Proof

An argument that convincingly demonstrates the truth of a statement

In mathematics,

A proof is a chain of logical deductions that demonstrates the truth of a proposition assuming the truth of some known axioms

■ Direct proof to prove $P \rightarrow Q$

- Assume P is true, with a chain of logical deductions conclude that Q is true

Proof by Contrapositive

Recall that an implication is equivalent to it's contrapositive

$$
P \rightarrow Q \equiv \neg Q \rightarrow \neg P
$$

To prove $P \rightarrow Q$,
apply the direct proof method to it's contrapositive $(\neg Q \rightarrow \neg P)$

Just a restatement of the given statement rather than a proof method

Proof by Contrapositive

$$
\text { Prove that If } \underbrace{a+b>7}_{P} \text {, then } \underbrace{a>3 \text { or } b>4}_{Q}
$$

Contrapositive

Prove that If $\underbrace{\neg(a>3 \text { or } b>4)}_{\neg Q}$, then $\underbrace{\neg(a+b>7)}_{\neg P}$

Proof: Assume $\neg Q$ is true
$\neg((a>3) \vee(b>4)) \equiv(a \leq 3) \wedge(b \leq 4) \quad \triangleright$ DeMorgan Law
Adding the two inequalities, we get
$a+b \leq 3+4=7$, and equivalently
$\neg(a+b>7) \equiv \neg P$
We conclude that $\neg Q \rightarrow \neg P$ and hence $P \rightarrow Q$ is true

Proof by Contrapositive

Prove that If $x^{5}<0$, then $x<0$

Contrapositive

Prove that If $x \geq 0$, then $x^{5} \geq 0$

Proof: Assume $x \geq 0$
If $x=0$, then $x^{5}=0 \quad \Longrightarrow \quad x^{5} \geq 0$
If $x>0$, then
since the product of five positive numbers is positive, hence $x^{5}>0 \geq 0$

We conclude that $\neg Q \rightarrow \neg P$ and hence $P \rightarrow Q$ is true

Proofs by Contrapositive

ICP 8-4 Prove that
For all positive integers n, if 5 does not divide n^{2}, then 5 does not divide n

Contrapositive:
if n is a multiple of 5 , then n^{2} is a multiple of 5

Proof: $n=5 k \quad \Longrightarrow \quad n^{2}=(5 k)^{2}=5\left(5 k^{2}\right)$

Proof by Contrapositive

Square root of an irrational number is an irrational number

In implication form the statement is

If r is irrational, then \sqrt{r} is also irrational

Contrapositive

If \sqrt{r} is rational, then r is rational

Proof by Contrapositive

If \sqrt{r} is rational, then r is rational

Proof:

Let $\sqrt{r}=x / y$ where x and y are integers and $y \neq 0$
Squaring both sides, we get

$$
r=\frac{x^{2}}{y^{2}},
$$

x^{2} and y^{2} are integers, and $y^{2} \neq 0$
hence r is a rational number

Proofs by Contrapositive

ICP 8-5 Prove that for all $n \in \mathbb{N}$, if $n^{2}+3$ is an odd integer, then n is an even integer.

Contrapositive:
if n is odd, then $n^{2}+3$ is even

Proof:

$$
n=2 k+1 \quad \Longrightarrow \quad n^{2}+3=4 k^{2}+4 k+1+3=2\left(2 k^{2}+2 k+2\right)
$$

