Proofs

- Proofs: Terminology and Rules of Inference
- Direct Proof
- Proof by Contrapositive
- Proof by Contradiction
- Proofs using Case Analysis

Imdad ullah Khan

An argument that convincingly demonstrates the truth of a statement

In mathematics,

A proof is a chain of logical deductions that demonstrates the truth of a proposition assuming the truth of some known axioms

• Direct proof to prove P o Q

• Assume P is true, with a chain of logical deductions conclude that Q is true

Recall that an implication is equivalent to it's contrapositive

 $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$

To prove $P \rightarrow Q$,

apply the direct proof method to it's contrapositive $(\neg Q \rightarrow \neg P)$

Just a restatement of the given statement rather than a proof method

Prove that

If
$$\underbrace{a+b>7}_{P}$$
, then $\underbrace{a>3 \text{ or } b>4}_{Q}$

ContrapositiveProve thatIf
$$\neg(a > 3 \text{ or } b > 4)$$
, then $\neg(a + b > 7)$ $\neg Q$ $\neg P$

Proof: Assume $\neg Q$ is true

$$\neg((a > 3) \lor (b > 4)) \equiv (a \le 3) \land (b \le 4) \qquad \qquad \triangleright \text{ DeMorgan Law}$$

Adding the two inequalities, we get

$$a + b \leq 3 + 4 = 7$$
, and equivalently

$$\neg(a+b>7) \equiv \neg P$$

We conclude that $\neg Q \rightarrow \neg P$ and hence $P \rightarrow Q$ is true

Prove that If $x^5 < 0$, then x < 0

Contrapositive

Prove that If $x \ge 0$, then $x^5 \ge 0$

Proof: Assume $x \ge 0$

If
$$x = 0$$
, then $x^5 = 0 \implies x^5 \ge 0$

If x > 0, then

since the product of five positive numbers is positive, hence $x^5>0\geq 0$

We conclude that $\neg Q \rightarrow \neg P$ and hence $P \rightarrow Q$ is true

ICP 8-4 Prove that

For all positive integers n, if 5 does not divide n^2 , then 5 does not divide n

Contrapositive:

if n is a multiple of 5, then n^2 is a multiple of 5

Proof:
$$n = 5k \implies n^2 = (5k)^2 = 5(5k^2)$$

Square root of an irrational number is an irrational number

In implication form the statement is

If r is irrational, then \sqrt{r} is also irrational

Contrapositive

If \sqrt{r} is rational, then r is rational

If \sqrt{r} is rational, then r is rational

Proof:

Let $\sqrt{r} = x/y$ where x and y are integers and $y \neq 0$

Squaring both sides, we get

$$r=\frac{x^2}{y^2},$$

 x^2 and y^2 are integers, and $y^2 \neq 0$

hence r is a rational number

ICP 8-5 Prove that for all $n \in \mathbb{N}$, if $n^2 + 3$ is an odd integer, then n is an even integer.

Contrapositive:

if n is odd, then
$$n^2 + 3$$
 is even

Proof:

$$n = 2k + 1 \implies n^2 + 3 = 4k^2 + 4k + 1 + 3 = 2(2k^2 + 2k + 2)$$