Discrete Mathematics

Proofs

- Proofs: Terminology and Rules of Inference
- Direct Proof
- Proof by Contrapositive
- Proof by Contradiction
- Proofs using Case Analysis

Imdad ullah Khan

Proof

An argument that convincingly demonstrates the truth of a statement

In mathematics,

A proof is a chain of logical deductions that demonstrates the truth of a proposition assuming the truth of some known axioms

Direct Proofs

Direct Proof: used to prove statement of the form $P \rightarrow Q$
1 Assume that P is true
2 With a chain of logical deductions conclude that Q is true

P	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

When P is false, $P \rightarrow Q$ is already true irrespective of value of Q
The only case when $P \rightarrow Q$ is false, is when $P=T$ and $Q=F$
Hence our goal is to rule out that possibility

Direct Proofs

Using a direct proof method, we will prove the following statement

Definition

An integer y is even if there exists an integer x such that $y=2 x$

Theorem

The product of two even integers is even

Restatement as an implication

Theorem

If x and y are even integers, then $x y$ is even

Direct Proofs

Theorem

$$
\text { If } \underbrace{x \text { and } y \text { are even integers, }}_{P} \text {, then } \underbrace{x y \text { is even }}_{Q}
$$

Proof: Assume that P is true
Let $x=2 a$ and $y=2 b$, then

$$
\begin{aligned}
x y & =(2 a)(2 b) \\
& =4(a b) \\
& =2(2 a b)
\end{aligned}
$$

Since $2 a b$ is an integer, by definition $x y$ is an even integer so Q is true We conclude that $P \rightarrow Q$ is true

Direct Proofs

Theorem

$$
\text { If } \underbrace{a>3 \text { and } b>4}_{P} \text {, then } \underbrace{a+b>7}_{Q}
$$

Proof: Assume that P is true
Let $a>3$ and $b>4$,
Adding the two inequalities, we get

$$
a+b>3+4=7
$$

Hence Q is also true
We conclude that $P \rightarrow Q$ is true

Direct Proofs

ICP 8-1 Prove or disprove that the product of two consecutive integers is an even integer.

In any two consecutive integers

- one of them will be even ($2 m$)
- and the other will be odd $\quad(2 m \pm 1)$

$$
2 m \times(2 m \pm 1)=2\left(2 m^{2} \pm m\right)
$$

Hence the product is even

Direct Proofs

Theorem
The sum of two rational numbers is rational

Restating as an implication

Theorem

If p and q are rational numbers, then $p+q$ is rational

Direct Proofs

Theorem

If p and q are rational numbers, then $p+q$ is rational

Proof:

Let $p=1 / 3$ and $q=3 / 4$
$p+q=1 / 3+3 / 4=13 / 12$
which is a rational number!

Not a Proof: This only shows one example, (like a program that works for only one input)

Direct Proofs

Theorem

If p and q are rational numbers, then $p+q$ is rational

Proof:

Let $p=a / b$ for some integers a and $b \neq 0$
and let $q=a / b$ for some integers a and $b \neq 0$
then $p+q=2(a / b)=2 a / b$
Since $2 a$ and b are integers, $p+q$ is a rational number!

Not a Proof: This only works for cases when $p=q$

Direct Proofs

Theorem

If p and q are rational numbers, then $p+q$ is rational

Proof:

Let $p=a / b$ for some integers a and $b \neq 0$
and let $q=c / d$ for some integers c and $d \neq 0$

- rational numbers are fractions
- p and q are fractions and sum of fractions is a fraction

■ $p+q$ is a fraction, thus $p+q$ is a rational number

Not a Proof: wrong definition of rational numbers
all rationals are fractions but not all fractions are rational numbers, $\pi / 1$

Direct Proofs

Theorem

If p and q are rational numbers, then $p+q$ is rational

Proof:

Let $p=a / b$ for some integers a and $b, b \neq 0$
and let $q=c / d$ for some integers c and $d, d \neq 0$
then $p+q=a / b+c / d=(a d+b c) / b d$
$(a d+b c)$ and $b d$ are integers and $b d \neq 0$
Thus, $p+q$ is a rational number

How many bad proofs are there!

Direct Proofs

ICP 8-2 Prove or disprove that the product of two odd integers is an odd integer.

Given two odd integers $2 m+1$ and $2 n+1$:
$(2 m+1) \times(2 n+1)=4 m n+2 m+2 n+1=2(2 m n+m+n)+1$

Hence the product is an odd integer

Direct Proofs

ICP 8-3 Prove or disprove that the product of any five consecutive positive integers is divisible by 120.

Given five consecutive integers, $n, n+1, n+2, n+3$ and $n+4$:

■ Exactly one of them is divisible by $5 \Longrightarrow$ their product is divisible by 5

- At least one of them is divisible by $4 \Longrightarrow$ their product is divisible by 4
- At least one of them is divisible by $3 \Longrightarrow$ their product is divisible by 3
- At least one of them is divisible by $2 \Longrightarrow$ their product is divisible by 2

Hence the product is divisible by $5 \times 4 \times 3 \times 2=120$

