Discrete Mathematics

Proofs

■ Proofs: Terminology and Rules of Inference

- Direct Proof
- Proof by Contrapositive
- Proof by Contradiction
- Proofs using Case Analysis

Imdad ullah Khan

Proofs

An argument that convincingly demonstrates the truth of a statement

Proofs in Computer Science

■ Prove that an algorithm is correct
■ Prove that an algorithm has a particular runtime
■ Data structure proofs often lead to efficient and simpler algorithms
■ Develops useful habits in thinking: e.g.

- working with precise notations and definitions
- exactly and unambiguously formulating statements
- paying attention to all possibilities

Proof

An argument that convincingly demonstrates the truth of a statement

In mathematics,

A proof is a chain of logical deductions that demonstrates the truth of a proposition assuming the truth of some known axioms

Terminology

■ Axiom: A basic assumption about mathematical structure that is accepted to be true. e.g.

- There is a straight line between any two points
- $2>1$

■ Theorem: Important proposition that has a proof

- Lemma: Proposition that serves as an intermediate step in proof of a theorem
- Corollary: Proposition that follows directly (easily) from a theorem
- Essentially a special case of the general statement of the theorem

■ Rules of Inference: The justification for the steps in the chain of deductions in a proof

■ Fallacy: An incorrect reasoning or deduction

Axioms of Euclidean Geometry

Any two points can be joined by exactly one line segment

Any line segmented can be extended into a line

Given a point p and a length r, there is a circle of radius r with center p

Any two right angles are congruent

Given a line ℓ and a point p not on ℓ, there is exactly one line through p parallel to ℓ

The first page of the first printed edition of Euclid's Elements, published in 1482.

Theorems in Euclidean Geometry

The Pythogorus theorem

The Triangle Angles Sum theorem

Rules of Inference

modus ponens

Suppose we know (have a proof) that
$1 P$ is true and

$$
\frac{P, P \rightarrow Q}{Q}
$$

$2 P \rightarrow Q$ is true
Then Q must be true
P and $P \rightarrow Q$ are two hypotheses and Q is the conclusion in this case
\because the following is a tautology

$$
P \wedge(P \rightarrow Q) \rightarrow Q
$$

P	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

Rules of Inference

modus tollens

Suppose we know (have a proof) that
$1 Q$ is false and

$$
\frac{\neg Q, \quad P \rightarrow Q}{\neg P}
$$

$2 P \rightarrow Q$ is true
Then P must be false
$\neg Q$ and $P \rightarrow Q$ are two hypotheses and $\neg P$ is the conclusion in this case
\because the following is a tautology

$$
\neg Q \wedge(P \rightarrow Q) \rightarrow \neg P
$$

P	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

Rules of Inference

hypothetical syllogism

Suppose we know (have a proof) that
I $P \rightarrow Q$ is true \because and
(2) $Q \rightarrow R$ is true

Then $P \rightarrow R$ must be true

Fallacies

Theorem
$2=1 \quad$?

Proof:

Let $\quad a=b$
$\Longrightarrow a^{2}=a b$
$\Longrightarrow a^{2}+a^{2}-2 a b=a b+a^{2}-2 a b$
$\Longrightarrow 2\left(a^{2}-a b\right)=a^{2}-a b$
$\Longrightarrow 2=1$
\triangleright Assumption
\triangleright multiply by a
\triangleright add $a^{2}-2 a b$
\triangleright divide by $a^{2}-a b$

A proof is an argument that can withstand all criticisms from a highly caffeinated adversary (your TA).
quote from 15-251@CMU

A mathematical proof should resemble a simple and clear-cut constellation, not a scattered cluster in the Milky Way.

G.H. Hardy, A Mathematician's Apology

The mathematician's patterns, like the painter's or the poet's must be beautiful; the ideas like the colours or the words, must fit together in a harmonious way. Beauty is the first test: there is no permanent place in the world for ugly mathematics.
G. H. Hardy

Proving Statements

Pythagoras's Theorem ($\sim 500 \mathrm{BC}$)

$a^{2}+b^{2}=c^{2}$ has solutions where a, b, and c are positive integers

This statement is TRUE,
e.g. $a=3, b=4$, and $c=5$

Proving Statements

Fermat's Last Theorem (1637)

$a^{3}+b^{3}=c^{3}$ has no solution where a, b, c are positive integers

Andrew Wiles (1994) proved this statement to be TRUE

■ Wiles announced "proof" on 23 June 1993

- In September 1993 error was found in the proof
- On 19 September 1994, Wiles corrected the proof
- The corrected proof was published in 1995

Proving Statements

```
Euler Conjecture (1769)
a}\mp@subsup{a}{}{4}+\mp@subsup{b}{}{4}+\mp@subsup{c}{}{4}=\mp@subsup{d}{}{4}\mathrm{ has no solutions where a,b,c,d are positive integers
```

Noam Elkies (1987) proved this statement FALSE
$a=2682440$,
$b=15365639$,
$c=18796760$,
$d=20615673$,

$$
3^{3}+4^{3}+5^{3}=6^{3}
$$

is a solution

Proving Statements

Goldbach Conjecture (1742)

Every even integer >2 is the sum of two primes

Sum of two primes at intersection of two lines. (source: Wikipedia)

- No one yet knows the truth value of this statement

■ Every even integer ever checked is a sum of two primes
■ Just one counter-example will disprove the claim

■ Homework!

Proving Statements

Conjecture (1852)

Regions of any 2-d map can be colored with 4 colors so that no neighboring regions have the same color.

Graphs Applications: Coloring

- Kempe (1879) announced a proof
- Tait (1880) announced an alternative proof
- Heawood (1890) found a flaw in Kempe's proof
- Petersen (1881) found a flaw in Tait's proof
- Heesch (1969) reduced the statement to checking a large number of cases
- Appel \& Haken (1976) gave a "proof", that involved a computer program to check 1936 cases (1200 hours of computer time)
- Robertson et.al. (1997) gave another simpler "proof" but still involved computer program

■ No human can check all the cases

- What if the program has a bug

■ What if the compiler/system hardware has a bug

