Discrete Mathematics

Sequences and Sums

- Sequences and Progressions
- Summation and its linearity
- Evaluating Sums

■ Evaluating Sums - Proofs without words
■ Geometric Sums

Imdad ullah Khan

Evaluating Sums

- Given a summation find a closed form formula to evaluate it
- A formula to output value of the sum using the values of limits only

$$
\begin{aligned}
& \sum_{i=1}^{n} i=1+2+\ldots+n \quad=\frac{n(n+1)}{2} \\
& \sum_{i=1}^{n} 2 i=2+4+\ldots+2 n=n(n+1) \\
& \sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \\
& \sum_{i=1}^{n} i^{3}=1^{3}+2^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2} \\
& \sum_{i=1}^{n} 2 i-1=1+3+\ldots+2 n-1=n^{2}
\end{aligned}
$$

Evaluating Sums

Geometric Progressions

A geometric progression is a sequence of the form

$$
a, a r, a r^{2}, \ldots, a r^{i}, a r^{i+1} \ldots
$$

where a and r are real numbers

$$
\frac{a r^{i+1}}{a r^{i}}=r
$$

- the ratio of consecutive terms is called the common ratio
- a is called the initial term
- The next term is obtained by multiplying the previous term with r

Finite Geometric Sums

Evaluating finite geometric sum

$$
S_{n}=\sum_{i=0}^{n-1} a r^{i}
$$

Add one more term

$$
S_{n}+a r^{n}=\sum_{i=0}^{n-1} a r^{i}+a r^{n}=a r^{0}+\sum_{i=0}^{n-1} a r^{i+1}
$$

$$
=a r^{0}+r \underbrace{\sum_{i=0}^{n-1} a r^{i}}_{S_{n}}=a r^{0}+r S_{n}=a+r S_{n}
$$

$$
S_{n}+a r^{n}=a+r S_{n} \quad \Longrightarrow \quad S_{n}=\frac{a-a r^{n}}{1-r} \quad \text { when } r \neq 1
$$

Finite Geometric Sums

$$
S_{n}=\sum_{i=0}^{n-1} a r^{i} \quad \Longrightarrow \quad S_{n}=\frac{a-a r^{n}}{1-r} \quad \text { when } r \neq 1
$$

Some authors refer to this method as the perturbation method.
Generally, it works as follows
1 Denote an unknown sum as $S_{n}=\sum_{i=0}^{n} a_{i}$
$2 S_{n+1}=S_{n}+a_{n+1}=a_{0}+\sum_{i=1}^{n+1} a_{i} \quad \triangleright$ separate last and first term
3 $S_{n+1}=S_{n}+a_{n+1}=a_{0}+\sum_{j=0}^{n} a_{j+1}$
\triangleright change of variable
4 Try to express $\sum_{j=0}^{n} a_{j+1}$ in terms of S_{n}
5 If can be expressed as multiple of S_{n}, solve for S_{n} to get a closed form

Finite Geometric Sums

ICP 7-11 Use the perturbation method to find a closed form of

$$
\sum_{i=0}^{n} i r^{i}
$$

Infinite Geometric Series

Evaluating infinite geometric sum

$$
S=\sum_{i=0}^{\infty} a_{i}=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} a_{i}
$$

$S=\sum_{i=0}^{\infty} a r^{i}=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} a r^{i}=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{a-a r^{n}}{1-r}$

$$
S=\lim _{n \rightarrow \infty} \frac{a-a r^{n}}{1-r}= \begin{cases}\frac{a}{1-r} & \text { if }|r|<1 \\ \infty & \text { else }\end{cases}
$$

Infinite Geometric Series

$$
S=\sum_{i=0}^{\infty} a r^{i}= \begin{cases}\frac{a}{1-r} & \text { if }|r|<1 \\ \infty & \text { else }\end{cases}
$$

Evaluate $\quad \sum_{i=0}^{\infty}(1 / 2)^{i} \quad\left(a=1, r=\frac{1}{2}\right)$

$$
\begin{aligned}
& \sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots=2 \\
& \sum_{i=1}^{\infty}\left(\frac{1}{2}\right)^{i}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots=1
\end{aligned}
$$

Infinite Geometric Series: Geometric Approach

Geometric Sum: Geometric Approach

Finite Geometric Sum from Infinite

$$
\begin{gathered}
S_{n}=\sum_{i=0}^{n-1} a r^{i}=\frac{a-a r^{n}}{1-r} \quad \text { when } r \neq 1 \\
S=\sum_{i=0}^{\infty} a r^{i}= \begin{cases}\frac{a}{1-r} & \text { if }|r|<1 \\
\infty & \text { else }\end{cases}
\end{gathered}
$$

An alternative way to evaluate S_{n}

$$
\begin{gathered}
S=\underbrace{a+a r+a r^{2}+\ldots+a r^{n-1}}_{S_{n}}+a r^{n}+a r^{n+1}+a r^{n+2}+\ldots \\
S=S_{n}+a r^{n}+a r^{n+1}+a r^{n+2}+a r^{n+3}+\ldots
\end{gathered}
$$

Finite Geometric Sum from Infinite

An alternative way to evaluate S_{n}

$$
\begin{aligned}
S & =\underbrace{a+a r+a r^{2}+\ldots+a r^{n-1}}_{S_{n}}+a r^{n}+a r^{n+1}+a r^{n+2}+\ldots \\
& =S_{n}+a r^{n}+a r^{n+1}+a r^{n+2}+a r^{n+3}+\ldots \\
& =S_{n}+r^{n}\left(a+a r+a r^{2}+a r^{3}+\ldots\right)
\end{aligned}
$$

$$
\begin{aligned}
& S=S_{n}+r^{n} S \\
& \Longrightarrow S_{n}=S\left(1-r^{n}\right) \\
& \Longrightarrow S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

Evaluating Sums

Evaluate the following sums in terms of appropriate variables

$$
\begin{aligned}
& \text { ICP 7-12 } \sum_{i=0}^{\infty} 2^{i} / 3^{i+1}=\frac{1}{3} \sum_{i=0}^{\infty} 2^{i} / 3^{i}=\frac{1}{3} \sum_{i=0}^{\infty}(2 / 3)^{i} \\
& \\
& \quad \triangleright \text { Infinite geometric sum } a=1, \quad r=2 / 3
\end{aligned}
$$

ICP 7-13 $\sum_{i=0}^{n} 2^{i} / 3^{i+1}$

ICP 7-14 $\sum_{i=3}^{\infty} 2^{i+1} / 3^{i}$

ICP 7-15 $\sum_{i=2}^{n} 2^{i+1} / 3^{i}$

