Discrete Mathematics

Sequences and Sums

- Sequences and Progressions
- Summation and its linearity
- Evaluating Sums
- Evaluating Sums Proofs without words
- Geometric Sums

IMDAD ULLAH KHAN

Sequences, Strings and Progressions

- A sequence is an ordered list could be finite or infinite
- lacksquare An infinite sequence is a function $\mathbb{N}\mapsto S$
- A finite sequence of length n is a function $\{1, 2, ..., n\} \mapsto S$
- *f* represents the order of elements in *S*
- Finite sequences over a fixed alphabet are called strings
- $lue{}$ Geometric progression is a sequence of numbers, where the next term is obtained by multiplying the previous term with the common ratio r
- Arithmetic progression is a sequence of numbers, where the next term is obtained by adding the previous term with the common difference d

The symbol \sum converts a sequence of numbers into a sum

$$\sum_{i=0}^{n} a_{i} = a_{0} + a_{1} + a_{2} + \cdots + a_{n}$$

pronounced as "sum of a_i , where i goes from 0 to n"

$$\sum_{i=0}^{17} a_i$$

The symbol \sum converts a sequence of numbers into a sum

$$\sum_{i=\ell}^m a_i$$

pronounced as "sum of a_i , where i goes from ℓ to m"

- i: index of summation
- \bullet ℓ, m : lower & upper limit

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
a_0	a_1	a_2	a_3							a_{10}					a_{15}	a_{16}	a_{17}

$$\sum_{i=2}^{10} a_i$$

$$0+1+2+3+4+\ldots+n$$

$$\sum_{i=0}^{n} i$$

```
sum = 0;
for(i=0;i<=n;i++)
{
    sum = sum + i;
}</pre>
```

First *n* terms of

$$0+3+8+15+24+\dots$$

$$\sum_{i=1}^{n} i^2 - 1$$

```
sum = 0;
for(i=1;i<=n;i++)
{
    sum = sum + i * i - 1;
}</pre>
```

Write the following in expanded form

$$\sum_{i=3}^{6} 2i^2 = 2(3^2) + 2(4^2) + 2(5^2) + 2(6^2)$$

$$\sum_{n=4}^{1} n^3 = 4^3 + 3^3 + 2^3 + 1^3$$

$$\sum_{i=1}^{3} (i^2 + 2i + 1) = \sum_{i=1}^{3} (i+1)^2 = 2^2 + 3^2 + 4^2$$

ICP 7-8
$$2\sum_{j=6}^{3} j^2 = 2(6^2) + 2(5^2) + 2(4^2) + 2(3^2)$$

Summation: Change of variable

Changing the variables sometimes helps evaluating the sum by bringing it into a familiar form

$$\sum_{j=1}^{6} (j+3)^3 = 4^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3$$

Let k = j + 3 then

$$\sum_{j=1}^{6} (j+3)^3 = \sum_{k=4}^{9} k^3$$

Be careful in evaluating the lower and upper limits

Linearity of Summation

A function $f(\cdot)$ is linear if for all real numbers a and b

$$f(ax + by) = a \cdot f(x) + b \cdot f(y)$$

Summation is linear!

$$\sum_{i=1}^{n} (p \cdot a_i + q \cdot b_i) = p \cdot \sum_{i=1}^{n} a_i + q \cdot \sum_{i=1}^{n} b_i$$

In the simpler form (q = 0), we get

$$\sum_{i=1}^{n} p \cdot a_{i} = p \cdot \sum_{i=1}^{n} a_{i}$$

Linearity of Summation

$$\sum_{i=1}^{3} 7i^{2} = 7(1)^{2} + 7(2)^{2} + 7(3)^{2} = 7(1^{2} + 2^{2} + 3^{2}) = 7\sum_{i=1}^{3} i^{2}$$

$$\sum_{i=1}^{n} p \cdot a_{i} = p \cdot a_{1} + p \cdot a_{2} + \dots + p \cdot a_{n}$$

$$= \underbrace{a_{1} + \dots + a_{1}}_{p \text{ times}} + \underbrace{a_{2} + \dots + a_{2}}_{p \text{ times}} + \dots + \underbrace{a_{n} + \dots + a_{n}}_{p \text{ times}}$$

$$= \underbrace{(a_{1} + \dots + a_{n}) + (a_{1} + \dots + a_{n}) + \dots + (a_{1} + \dots + a_{n})}_{p \text{ times}}$$

$$= \underbrace{\sum_{i=1}^{n} a_{i} + \sum_{i=1}^{n} a_{i} + \dots + \sum_{i=1}^{n} a_{i}}_{p \text{ times}} = p \cdot \underbrace{\sum_{i=1}^{n} a_{i}}_{p \text{ times}}$$

When **Friedrich Gauss** was nine years old, their teacher wanted to pass time so asked the class to evaluate

$$1+2+3+\ldots+999+1000$$

Gauss solved the problem in 30 seconds

It seems a lot of stuff is attributed to Gauss – either he was really smart or he had a great press agent.

Sidenote in 'Concrete Mathematics'

Algorithm Sort an array A of n numbers

for
$$i = 1$$
 to n do
for $j = i + 1$ to n do
if $A[i] > A[j]$ then
EXCHANGE $(A[i], A[j])$

i	j's compared with	number of comparisons
1	$2,3,\ldots,n$	n-1
2	$2,3,\ldots,n$ $3,4,\ldots,n$	<i>n</i> − 2
:		:
n-2	n-1, n	2
n-1	n	1

Number of comparisons = $1 + 2 + \ldots + n - 1$

Organizing Tournaments

- n teams are participating in Round 1 of a soccer tournament
- Every team play every other team exactly once
- Each game is refereed by a professional
- The referee charges \$1 per game

What is the total payment to the referee?

Organizing Tournaments

Team	Teams played with	num games	num games
1	$2, 3, 4, \ldots, n-1, n$	n – 1	n-1
2	$1,3,4,\ldots,n-1,n$	n – 1	n – 2
3	$1,2,4,\ldots,n-1,n$	<i>n</i> − 1	n – 3
÷	÷	÷.	÷
n-1	$1,2,\ldots n-2,n$	n – 1	1
n	$1,2,\ldots n-2,n-1$	n – 1	0

$$\mathsf{num} \; \mathsf{games} = 1 + 2 + \ldots + n - 1$$

Summation is the discrete analog of Integration

Product

Occasionally, we use the product.

The symbol \prod converts a sequence of numbers into a **product**

$$\prod_{i=0}^n a_i = a_0 \times a_1 \times a_2 \times \cdots \times a_n$$

pronounced as "product of a_i , where i goes from 0 to n"

```
answer = 1;
for(i=0;i<=n;i++)
{
    answer = answer * a[i];
}</pre>
```

For a sequence of numbers $a_{i,j}$ (a sequence indexed by two variables) or 2D array or matrix, double summation converts it into a **sum**

$$\sum_{i=1}^{n_1} \sum_{j=1}^{n_2} a_{i,j}$$

$$= a_{1,1} + a_{1,2} + \dots + a_{1,n_2}$$

$$+ a_{2,1} + a_{2,2} + \dots + a_{2,n_2}$$

$$+ a_{3,1} + a_{3,2} + \dots + a_{3,n_2}$$

$$\vdots$$

$$\vdots$$

$$+ a_{n_1,1} + a_{n_1,2} + \dots + a_{n_1,n_2}$$

	1	2	3		n_2				
1	$a_{1,1}$	$a_{1,2}$	$a_{1,3}$		a_{1,n_2}				
2	$a_{2,1}$	$a_{2,2}$	$a_{2,3}$		a_{2,n_2}				
3	a _{3,1}	$a_{3,2}$	$a_{3,3}$	• • •					
	٠								
n_1	$a_{n_1,1}$	$a_{n_1,2}$	$a_{n_1,3}$		a_{n_1,n_2}				

For a sequence of numbers $a_{i,j}$ (a sequence indexed by two variables) or 2D array or matrix, double summation converts it into a **sum**

$$\sum_{i=1}^{n_1} \sum_{j=1}^{n_2} a_{i,j}$$

$$= a_{1,1} + a_{1,2} + \dots + a_{1,n_2}$$

$$+ a_{2,1} + a_{2,2} + \dots + a_{2,n_2}$$

$$+ a_{3,1} + a_{3,2} + \dots + a_{3,n_2}$$

$$\vdots$$

$$\vdots$$

$$+ a_{n_1,1} + a_{n_1,2} + \dots + a_{n_1,n_2}$$


```
sum = 0;
for(i=1;i<=n1;i++)
{
    for(j=1;j<=n2;j++)
    {
        sum = sum + a[i][j];
    }
}</pre>
```

For a sequence of numbers $a_{i,j}$ (a sequence indexed by two variables) or 2D array or matrix, double summation converts it into a **sum**

$$\sum_{i=1}^{n_1} \sum_{j=1}^{n_2} a_{i,j} = \sum_{j=1}^{n_2} \sum_{i=1}^{n_1} a_{i,j}$$

Row-major order

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Column-major order

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

For a sequence of numbers $a_{i,j}$ (a sequence indexed by two variables) or 2D array or matrix, double summation converts it into a **sum**

$$\sum_{i=1}^{n_1} \sum_{j=1}^{i} a_{i,j}$$

$$= a_{1,1}$$

$$+ a_{2,1} + a_{2,2}$$

$$+ a_{3,1} + a_{3,2} + a_{3,3}$$

$$+ a_{4,1} + a_{4,2} + a_{4,3} + a_{4,4}$$

$$\vdots$$

$$+ a_{n_1,1} + a_{n_1,2} + \dots + a_{n_1,n_1}$$

Assuming $n_1 \leq n_2$

For a sequence of numbers $a_{i,j}$ (a sequence indexed by two variables) or 2D array or matrix, double summation converts it into a **sum**

$$\sum_{i=1}^{n_1} \sum_{j=1}^{i} a_{i,j}$$

$$= a_{1,1}$$

$$+ a_{2,1} + a_{2,2}$$

$$+ a_{3,1} + a_{3,2} + a_{3,3}$$

$$+ a_{4,1} + a_{4,2} + a_{4,3} + a_{4,4}$$

$$\vdots$$

$$+ a_{n_1,1} + a_{n_1,2} + \dots + a_{n_1,n_1}$$


```
sum = 0;
for(i=1;i<=n1;i++)
{
    for(j=1;j<=i;j++)
    {
        sum = sum + a[i][j];
    }
}</pre>
```

Assuming $n_1 \leq n_2$

For a sequence of numbers $a_{i,j}$ (a sequence indexed by two variables) or 2D array or matrix, double summation converts it into a **sum**

$$\sum_{i=\ell_i}^{u_i} \sum_{j=\ell_j}^{u_j} a_{i,j}$$

Assuming

$$1 \le \ell_i \le u_i \le n_1$$

and

$$1 \le \ell_j \le u_j \le n_2$$


```
sum = 0;
for(i=l_i;i<=u_i;i++)
{
    for(j=l_j;j<=u_j;j++)
      {
        sum = sum + a[i][j];
      }
}</pre>
```