Discrete Mathematics

Sequences and Sums

- Sequences and Progressions

■ Summation and its linearity

- Evaluating Sums

■ Evaluating Sums - Proofs without words
■ Geometric Sums

Imdad ullah Khan

Sequences

A sequence is an ordered list - could be finite or infinite

- $\left\{a_{i}\right\}$ denotes the sequence
$\square a_{i}$ is the $i^{\text {th }}$ term of the sequence \triangleright general term

a_{i} can be thought of as $f(i)$

Given a (multi)set $S(n=|S|)$, a sequence is a function $f:\{1,2, \ldots, n\} \mapsto S$

- An infinite sequence is a function $\mathbb{N} \mapsto S$
- f represents the order of elements in S
\triangleright assigns indices to S
- Be careful whether you start indexing from $i=0$ or $i=1$

Sequences with Patterns

What is the general term of the following sequences?

$$
1,2,3,4,5,6, \ldots
$$

$$
\triangleright a_{i}=i
$$

$2,4,6,8,10, \ldots$

$$
\triangleright a_{i}=2 i
$$

$1,3,5,7,9, \ldots$

$$
\triangleright a_{i}=2 i-1
$$

ICP 7-1 2, 5, 10, 17, 26, \ldots

$$
\triangleright a_{i}=i^{2}+1
$$

ICP 7-2 $2,8,26,80,242, \ldots$

$$
\triangleright a_{i}=3^{i}-1
$$

Sequences with Patterns

List the first 5 terms of each of these sequences.
The sequence starting with 10 and each term is obtained by subtracting 3 from the previous term

$$
\triangleright 10,7,4,1,-2
$$

The sequence whose nth term is the sum of the first n positive integers

$$
\triangleright 1,3,6,10,15
$$

The sequence whose nth term is $3^{n}-2^{n}$

$$
\triangleright 1,5,19,65,211
$$

ICP 7-3 The sequence whose nth term is the largest integer whose binary expansion has n bits (write your answer in decimal notation)

$$
\triangleright 1,3,7,15,31
$$

ICP 7-4 The sequence whose first two terms are 1 and 5 and each succeeding term is the sum of the two previous terms

$$
\triangleright 1,5,6,11,17
$$

Strings

■ Finite sequences are called strings
■ Length of a string is the number of terms it consists of
■ The empty string contains no term

$$
\triangleright \text { Length of the empty string is } 0
$$

■ Alphabet is the set of all possible terms

$$
\text { Alphabet }=\{0,1\}-\text { bit strings }
$$

Geometric Progressions

A geometric progression is a sequence of the form

$$
a, a r, a r^{2}, \ldots, a r^{i}, a r^{i+1} \ldots
$$

where a and r are real numbers

$$
\frac{a r^{i+1}}{a r^{i}}=r
$$

- the ratio of consecutive terms is called the common ratio
- a is called the initial term
- The next term is obtained by multiplying the previous term with r

Arithmetic Progressions

An arithmetic progression is a sequence of the form

$$
a, a+d, a+2 d, \ldots, a+i d, a+(i+1) d, \ldots
$$

where a and d are real numbers

$$
(a+(i+1) d)-(a+i d)=d
$$

- the difference of consecutive terms is called the common difference
- a is called the initial term
- The next term is obtained by adding the previous term with d

Progression Examples

$$
1,-1,1,-1,1,-1,1,-1, \ldots
$$

GP, $\quad a_{1}=1, \quad$ common ratio $=-1, \quad a_{i}=(-1)^{i-1}$

$$
3,9,27,81,243, \ldots
$$

GP, $\quad a_{1}=3, \quad$ common ratio $=3, \quad a_{i}=3^{i}$

$$
1,1 / 2,1 / 4,1 / 8,1 / 16, \ldots
$$

GP, $\quad a_{1}=1, \quad$ common ratio $=1 / 2, \quad a_{i}=(1 / 2)^{i-1}$

Progression Examples

$$
1,4,7,10,13,16, \ldots
$$

AP, $\quad a_{1}=1, \quad$ common difference $=3, \quad a_{i}=1+3(i-1)$

$$
6,2,-2,-6, \ldots
$$

AP, $\quad a_{1}=6, \quad$ common difference $=-4, \quad a_{i}=6-4(i-1)$

Progression Examples

For the following sequences, write the type of progression, initial term, common ratio/difference and general term?

ICP 7-5 $1,-2,4,-8,16,-32, \ldots$
ICP 7-6 $-2.7,0.1,2.9,5.8, \ldots$

Some Common Sequences

a_{i}	First 10 Terms
i^{2}	$1,4,9,16,25,36,49,64,81,100, \ldots$
i^{3}	$1,8,27,64,125,216,343,512,729,1000, \ldots$
i^{4}	$1,16,81,256,1296,2401,4096,6561,10000, \ldots$
2^{i}	$2,4,8,16,32,64,128,256,512,1024, \ldots$
3^{i}	$3,9,27,81,243,729,2187,6561,19683,59049$
$i!$	$1,2,6,24,120,720,5040,40320,362880,3628800$

Sequences, Strings and Progressions

■ A sequence is an ordered list — could be finite or infinite

- An infinite sequence is a function $\mathbb{N} \rightarrow S$
- A finite sequence of length is a function $\{1,2, \ldots, n\} \rightarrow S$
- f represents the order of elements in S

■ Finite sequences over a fixed alphabet are called strings

- Geometric progression is a sequence of numbers, where the next term is obtained by multiplying the previous term with the common ratio r
- Arithmetic progression is a sequence of numbers, where the next term is obtained by adding the previous term with the common difference d

