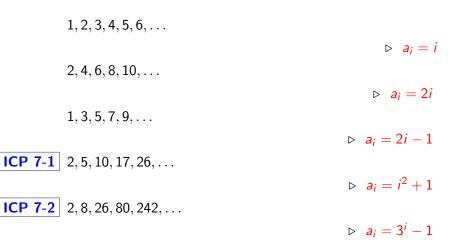

Sequences and Sums

- Sequences and Progressions
- Summation and its linearity
- Evaluating Sums
- Evaluating Sums Proofs without words
- Geometric Sums

Imdad ullah Khan

Sequences


A sequence is an ordered list — could be finite or infinite

Given a (multi)set S (n = |S|), a sequence is a function $f : \{1, 2, ..., n\} \mapsto S$

- An infinite sequence is a function $\mathbb{N}\mapsto S$
- f represents the order of elements in S \triangleright assigns indices to S
- Be careful whether you start indexing from i = 0 or i = 1

What is the general term of the following sequences?

List the first 5 terms of each of these sequences.

The sequence starting with 10 and each term is obtained by subtracting 3 from the previous term

▷ 10,7,4,1,-2

The sequence whose nth term is the sum of the first n positive integers

```
\triangleright 1, 3, 6, 10, 15
```

The sequence whose *n*th term is $3^n - 2^n$

▷ 1, 5, 19, 65, 211

ICP 7-3 The sequence whose nth term is the largest integer whose binary expansion has n bits (write your answer in decimal notation)

▷ 1, 3, 7, 15, 31

ICP 7-4 The sequence whose first two terms are 1 and 5 and each succeeding term is the sum of the two previous terms

```
▷ 1,5,6,11,17
```

Strings

- Finite sequences are called strings
- Length of a string is the number of terms it consists of
- The empty string contains no term

▷ Length of the empty string is 0

Alphabet is the set of all possible terms

Geometric Progressions

A geometric progression is a sequence of the form

 $\textit{a},\textit{ar},\textit{ar}^2,\ldots,\textit{ar}^i,\textit{ar}^{i+1}\ldots$

where a and r are real numbers

$$\frac{ar^{i+1}}{ar^i} = r$$

• the ratio of consecutive terms is called the common ratio

- a is called the initial term
- The next term is obtained by multiplying the previous term with r

An arithmetic progression is a sequence of the form

 $a, a + d, a + 2d, \dots, a + id, a + (i + 1)d, \dots$

where a and d are real numbers

$$(a+(i+1)d)-(a+id) = d$$

- the difference of consecutive terms is called the common difference
- a is called the initial term
- The next term is obtained by adding the previous term with d

$$1, -1, 1, -1, 1, -1, 1, -1, \ldots$$

GP, $a_1 = 1$, common ratio = -1, $a_i = (-1)^{i-1}$

 $3, 9, 27, 81, 243, \ldots$

GP, $a_1 = 3$, common ratio = 3, $a_i = 3^i$

$$1, 1/2, 1/4, 1/8, 1/16, \ldots$$

GP, $a_1 = 1$, common ratio = 1/2, $a_i = (1/2)^{i-1}$

 $1, 4, 7, 10, 13, 16, \ldots$

AP, $a_1 = 1$, common difference = 3, $a_i = 1 + 3(i-1)$

$$6, 2, -2, -6, \ldots$$

AP, $a_1 = 6$, common difference = -4, $a_i = 6 - 4(i - 1)$

Progression Examples

For the following sequences, write the type of progression, initial term, common ratio/difference and general term?

 ICP 7-5
 1, -2, 4, -8, 16, -32, ...

 ICP 7-6
 -2.7, 0.1, 2.9, 5.8, ...

ai	First 10 Terms
i ²	$1, 4, 9, 16, 25, 36, 49, 64, 81, 100, \ldots$
i ³	$1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, \ldots$
i ⁴	$1, 16, 81, 256, 1296, 2401, 4096, 6561, 10000, \ldots$
2 ⁱ	$2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, \ldots$
3 ⁱ	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049
<i>i</i> !	1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800

Sequences, Strings and Progressions

- A sequence is an ordered list could be finite or infinite
- \blacksquare An infinite sequence is a function $\mathbb{N} \to S$
- A finite sequence of length is a function $\{1, 2, \ldots, n\} \rightarrow S$
- f represents the order of elements in S
- Finite sequences over a fixed alphabet are called strings
- Geometric progression is a sequence of numbers, where the next term is obtained by multiplying the previous term with the common ratio r
- Arithmetic progression is a sequence of numbers, where the next term is obtained by adding the previous term with the common difference d