Relations

- Relations: Definition and Notation
- Properties of Relations
- Combining Relations
- Operations on Relations: Projection and Join
- Equivalence Relations and Equivalence Classes
- Partial Order

Imdad ullah Khan

A (binary) relation from X to Y is a subset of $X \times Y$

A (binary) relation on a set X is subset of $X \times X$ (relation from X to X)

A relation R on a set X is **reflexive** if $(a, a) \in R$ for every element $a \in X$

A relation R on a set X is symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in X$

A relation R on a set X is **transitive** if whenever $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$

Equivalence Relation

A relation R on a set X is an equivalence relation if it is

- Relates "similar" elements
- Generalize "equality"

Equivalence Relation

Consider the relation '=' on the set of integers

$$R = \{(a,b) \mid a=b\}$$

■ a = a ■ a = b \leftrightarrow b = a ■ $(a = b \land b = c) \rightarrow (a = c)$ > reflexive > symmetric > transitive

Hence '=' is an equivalence relation

For any reasonable notion of equivalence these three properties are needed

$$R ~=~ ig\{(a,b) \mid a=b ext{ or } a=-big\}$$

Is R an equivalence relation on the set of integers?

Equivalence Relation

Let S be a set of strings

Let R_n is a relation on S

 $(s,t) \in R_n$ if s = t or

 $len(s) \ge n$ and $len(t) \ge n$ AND the first n characters of s and t are same

- $(abc, abd) \notin R_4$
- $(xyz, xyz) \in R_4$
- $(xyz1, xyz1) \in R_4$
- (string, string) $\in R_4$
- (string, strike) $\in R_4$

- $(abc, abd) \notin R_5$
- (compiler, compilation) $\in R_5$
- (compiler, compilation) $\in R_6$
- (string, string) $\in R_6$
- (string, strike) $\notin R_6$

Verify that R_n is an equivalence relation

Identifiers in the C programming language R_{31}

Proof using Principle of Well Ordering

Theorem (The Division Algorithm)

Let **a** be an integer and **d** a positive integer. Then there are unique integers **q** and **r**, with $0 \le r < d$ such that a = dq + r

- **q** is called the quotient
- r is called the remainder
- d is called the divisor
- a is called the dividend

Theorem (The Division Algorithm)

Let **a** be an integer and **d** a positive integer. Then there are unique integers **q** and **r**, with $0 \le r < d$ such that a = dq + r

quotient and remainder when 11 is divided by 5

 $11~=~5\times2+1$

Notation:

q = 2 = 11 div 5r = 1 = 11 mod 5

Theorem (The Division Algorithm)

Let **a** be an integer and **d** a positive integer. Then there are unique integers **q** and **r**, with $0 \le r < d$ such that a = dq + r

quotient and remainder when $-11 \mbox{ is divided by 5}$

 $-11~=~5\times-3+4$

Notation:

q = -3 = -11 div 5r = 4 = -11 mod 5

Theorem (The Division Algorithm)

Let **a** be an integer and **d** a positive integer. Then there are unique integers **q** and **r**, with $0 \le r < d$ such that a = dq + r

$11~=~5\times2+1$

Given positive *a*, repeatedly subtract *d* until what remains *r* is $0 \le r < d$

$-11 = 5 \times -3 + 4$

Given negative *a*, repeatedly add *d* until what remains *r* is $0 \le r < d$

The Remainder Operator

 $a \mod d = a \% d$

The remainder when a is divided by d

If a = qd + r $(0 \le r < d)$, then $r = a \mod d$ and $q = a \operatorname{div} d$ Definition (Congruence (mod k))

 $x \equiv y \pmod{k}$ if and only if $x \mod k = y \mod k$

 $R = \{(a, b) : a \equiv b \pmod{3}\}$

ICP 6-29 Is *R* an equivalence relation on integers?

1 Reflexive: obvious

2 Symmetric: Suppose $a = 3q_a + r_a$ and $b = 3q_b + r_b$

If $(a, b) \in R$, then $r_a = r_b$. So $r_b = r_a$ and $(b, a) \in R$

3 Transitive: Suppose $a = 3q_a + r_a$ and $b = 3q_b + r_b$, $c = 3q_c + r_c$ If $(a, b), (b, c) \in R$, then $r_a = r_b, r_b = r_c$. So $r_a = r_c$ and $(a, c) \in R$ $R = \{(a,b) : a \mid b\}$

ICP 6-30 Is *R* an equivalence relation on integers?

1 Reflexive: a divides a

2 Transitive: If $(a, b), (b, c) \in R$, then $b = a * q_1$ and $c = b * q_2$ So $c = a * q_1q_2 \implies a \mid c \qquad \qquad \triangleright$ hence $(a, c) \in R$

3 Symmetric: 2|4 but $4 \nmid 2$

ICP 6-31

Suppose that R is the relation on the set of strings of English letters such that $(a, b) \in R$ if and only if len(a) = len(b), where len(x) is the length of the string x.

Is R an equivalence relation?

Let R be an equivalence relation on a set X

For $a \in X$, the set of all elements related to a is called the equivalence class of a

- $[a]_R$ denotes the equivalence class of a
- When *R* is clear, it is denoted by [*a*]
- If $b \in [a]$, then b is called a representative of this equivalence class

$$R \;=\; ig\{(a,b) \mid a=b ext{ or } a=-big\}$$

Equivalence class of 7?

 $[7] = \{7, -7\}$

Equivalence class of -7?

 $[-7] \; = \; \{7,-7\}$

Equivalence class of -3?

 $[-3] = \{3, -3\}$

Equivalence class of 0?

 $[0] = \{0\}$

A partition of a set S is a collection of disjoint non-empty subsets of S, with S as their union

A collection of subsets A_i , $i \in I$ (where I is an index set) forms a partition of S if and only if

1
$$A_i \neq \emptyset$$
 for $i \in I$
2 $A_i \cap A_j = \emptyset$ if $i \neq j$
3 $\bigcup_{i \in I} A_i = S$

Theorem

Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S.

Conversely, given a partition $\{A_i : i \in I\}$ of the set *S*, there is an equivalence relation *R* that has the sets $A_i, i \in I$, as its equivalence classes

$$R = \{(a, b) : a \equiv b \pmod{3}\}$$

R is an equivalence relation on integers

R is called congruence relation modulo 3.

Equivalence class \sim congruence class modulo 3

3 possible remainders \implies 3 congruence classes

$$[0] = \{ \dots, -9, -6, -3, 0, 3, 6, 9, \dots \}$$

$$[1] = \{ \dots, -8, -5, -2, 1, 4, 7, 10 \dots \}$$

$$[2] = \{ \dots, -7, -4, -1, 2, 5, 8, 11, \dots \}$$

ICP 6-32

What are equivalence classes of 0, 1, 2, and 3 of congruence modulo 4?