Relations

- Relations: Definition and Notation
- Properties of Relations
- Combining Relations
- Operations on Relations: Projection and Join
- Equivalence Relations and Equivalence Classes
- Partial Order

Imdad ullah Khan

Combining Relations

- Relations from A to B are subsets of $A \times B$
- All set operations can be performed on them

 $A = \{1, 2, 3\}$ and $B = \{1, 2\}$ Relation $R := \{(1,2), (3,2)\}$ Relation $S := \{(1,1), (2,2), (1,2), (3,2)\}$ $\blacksquare R \cup S = \{(1,2), (3,2), (1,1), (2,2)\}$ $\blacksquare R \cap S = \{(1,2), (3,2)\}$ $\blacksquare R \setminus S = \{\} = \emptyset$ • $S \setminus R = \{(1,1), (2,2)\}$

Combining Relations

Students := $\{AII LUMS CS Students\}$ Courses := $\{AII LUMS CS Courses\}$

- $R := \{(s, c): \text{ student } s \text{ passed course } c\}$
- $S := \{(s, c): \text{ student } s \text{ needs course } c \text{ to graduate}\}$

ICP 6-12 Briefly Describe (in colloquial terms if possible)

- *R* ∪ *S*
- *R* ∩ *S*
- *R* \ *S*
- $S \setminus R$

Like functions, binary relations can be composed

- R is a relation from A to B
- S is a relation from B to C
- The composite of R and S is a relation from A to C consisting of (a, c) ∈ A × C, if there exists b ∈ B such that (a, b) ∈ R and (b, c) ∈ R

Denoted by $R \circ S$

If $(a,b) \in R$ and $(b,c) \in S$, then $(a,c) \in R \circ S$

 $A = \{1, 2, 3, 4\}$

$$R = \{(1,4), (2,3), (3,2), (4,1)\}$$

$$S = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$$

 $R \circ S = \{(2,4), (3,3), (3,4), (4,2), (4,3), (4,4)\}$

R relates an element x to (5 - x)

S relates (5 - x) to elements larger than (5 - x)

$$R \circ S = \{(a,b) : b > 5-a\}$$

Let $A = \{1, 2, 3, 4\}$. Consider the following three relations on A **a** $R_1 = \{(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)\}$ **b** $R_2 = \{(1, 1)\}$ **c** $R_3 = \{(1, 3), (3, 2), (2, 1)\}$

Write the following relations

$$R_1 \circ R_2 = \{(1,1), (2,1)\}$$

$$R_1 \circ R_3 = \{(1,3), (1,1), (2,1), (2,3), (3,2)\}$$
ICP 6-13
$$R_2 \circ R_1$$
ICP 6-14
$$R_2 \circ R_3$$
ICP 6-15
$$R_3 \circ R_1$$
ICP 6-16
$$R_3 \circ R_2$$

}

- **R** is a relation from A to B, S from B to C, and $R \circ S$ from A to C
- Draw R and S with the common domain (B)
- Drawing all possible shortcuts

- **•** R is a relation from A to B, S from B to C, and $R \circ S$ from A to C
- Draw R and S with the common domain (B)
- Drawing all possible shortcuts

- R is a relation from A to B, S from B to C, and $R \circ S$ from A to C
- Draw R and S with the common domain (B)
- Drawing all possible shortcuts

Composing Relations: Exponentiation

A binary relation can be composed with itself

 $R^2 = R \circ R$ is defined as

If $(a, b) \in R$ AND $(b, c) \in R$, then $(a, c) \in R^2$

In general,

$$R^n = \underbrace{R \circ R \circ \ldots \circ R}_{n \text{ times}}$$

is recursively defined as

$$R^{n} = \begin{cases} R & \text{if } n = 1 \\ R^{n-1} \circ R & \text{else} \end{cases}$$

Let $A = \{1, 2, 3, 4\}$. Consider the following two relations on A $R_1 = \{(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)\}$ $R_2 = \{(1, 3), (3, 2), (2, 1)\}$

Write the following relations

ICP 6-17	$R_1^2 = R_1 \circ R_1$
ICP 6-18	$R_1^3 = R_1 \circ R_1 \circ R_1$
ICP 6-19	$R_2^2 = R_2 \circ R_2$
ICP 6-20	$R_2^3 = R_2 \circ R_2 \circ R_2$
ICP 6-21	$R_1 \circ R_2^2$
ICP 6-22	$R_2^2 \circ R_1$

Composing Relations: Exponentiation

$$R^n = \underbrace{R \circ R \circ \ldots \circ R}_{n \text{ times}}$$

Let R be a relation on set of people

 $(a, b) \in R$ if a is a parent of b

What is R^2 , R^3 , ...

Composition of Relations is Associative

Homework: Show that for any three relations R, S, and T

$$(R \circ S) \circ T = R \circ (S \circ T)$$

▷ you just need to use definition of composition

Homework: Show that for any relation R and integer n > 1

$$R^n = R^{n-1} \circ R = R \circ R^{n-1}$$