Discrete Mathematics

Functions

- Ordered tuples and Cartesian Product
- Function and Representations
- Types of Functions
- Composition and Inverse of Function

■ Numeric Functions

Imdad ullah Khan

Numeric Functions

A numeric function is typically of the form $f: \mathbb{R} \mapsto \mathbb{R}$
In discrete mathematics, generally $f: \mathbb{Z} \mapsto \mathbb{Z}$

The most important property of numeric functions (for us)
Both the domain and codomain are totally ordered sets
\triangleright every pair is comparable, $<,>, \leq, \geq$ are well defined
We can plot $f: \mathbb{R} \mapsto \mathbb{R}$ using the line plot

Monotonic Functions

A function $f: \mathbb{R} \mapsto \mathbb{R}$ is increasing if $f(x) \leq f(y)$ whenever $x<y$

$$
\forall x \forall y \quad(x<y \rightarrow f(x) \leq f(y))
$$

f is called strictly increasing if $f(x)<f(y)$ when $x<y$
\triangleright Decreasing and strictly decreasing functions are defined similarly
Collectively, such functions are called monotonic functions

Note: strictly increasing/decreasing functions are necessarily one-to-one

Important Numeric Functions: Ceiling and Floors

The floor and ceiling functions map real numbers to integers $(\mathbb{R} \mapsto \mathbb{Z})$

Given $x \in \mathbb{R}$,

- floor $(x),\lfloor x\rfloor$ is the largest integer $\leq x$
- ceiling $(x),\lceil x\rceil$ is the smallest integer $\geq x$

Important Numeric Functions: Ceiling and Floors

Important Numeric Functions：Ceiling and Floors

ICP 5－30

■ \1．7〕，「1．7〕

- \3．2〕，「3．2〕
- \3．5〕，「3．5〕
- \3．9〕，〔3．9〕

■ 【11〕，「11〕

ICP 5－31

■ 【－1．7 $\rfloor, \quad\lceil-1.7\rceil$
－ไ－3．2 $\rfloor, \quad\lceil-3.2\rceil$
■ $\lfloor-3.5\rfloor, \quad\lceil-3.5\rceil$
■ 【－3．9 $\rfloor, \quad\lceil-3.9\rceil$
■ $\lfloor-11\rfloor, \quad\lceil-11\rceil$

Important Numeric Functions: Logarithms

■ Exponentiation functions and their inverses (logarithmic functions) are very important numeric functions

■ Appear everywhere in computational finance, algorithms, sciences, probability, information theory and ...

Important Numeric Functions: Logarithms

b^{k} : What do we get when we multiply b, k times?
$\log _{b}(x)$: How many of b do we multiply to get x ?

$$
b^{k}=x \quad \Longrightarrow \quad \log _{b}(x)=k
$$

Important Numeric Functions: Logarithms

b^{k} : What do we get when we multiply b, k times?
$\log _{b}(x)$: How many of b do we multiply to get x ?

- b^{k} and $\log _{b}(x)$ are inverse of each other

plots made with https://www.geogebra.org/

Important Numeric Functions: Common Log Bases

$\log _{b}(\cdot)$

- Common Logarithm: Base 10: $b=10$
\triangleright Denoted by $\log (\cdot)$ - generally used in finance, engineering

■ Natural Logarithm: Base $e: b=e \sim 2.71828 \cdots$ (Euler's number)
\triangleright Denoted by $\ln (\cdot)$ - generally used in science, mathematics

■ Binary Logarithm: Base 2: $b=2$
\triangleright Denoted by $\lg (\cdot)$ or $\log (\cdot)$ - generally used in computer science

Important Numeric Functions: Properties of Logarithms

These properties of logarithms simplify calculations
1 Log of a product is the sum of logs

- Convert multiplication into addition
- $\log (x y)=\log x+\log y$
$\triangleright \because 2^{a} 2^{b}=2^{a+b}$
2 Log of a quotient is the difference of logs
- Convert division into subtraction

■ $\log \frac{x}{y}=\log x-\log y$

$$
\triangleright \because \frac{2^{a}}{2^{b}}=2^{a-b}
$$

3 Log of a power is the power times the log

- Convert exponentiation into multiplication
- $\log x^{y}=y \log x$
$\triangleright \because\left(2^{a}\right)^{b}=2^{a b}$

Important Numeric Functions: Change of Bases

Computation of $\log _{b_{1}}(x)$ can be done using $\log _{b_{2}}(\cdot)$

$$
\log _{b_{1}}(x)=\frac{\log _{b_{2}}(x)}{\log _{b_{2}}\left(b_{1}\right)}
$$

Important Numeric Functions: Numerals in numbers

A number n requires $\lfloor\log (n)\rfloor+1$ digits in writing

A number n requires $\lfloor\lg (n)\rfloor+1$ bits in writing

