Functions

- Ordered tuples and Cartesian Product
- Function and Representations
- Types of Functions
- Composition and Inverse of Function
- Numeric Functions

Imdad ullah Khan

A function $f : X \mapsto Y$ is **one-to-one** (or **injective**) iff

$$\forall x_1, x_2 \in X \ (f(x_1) = f(x_2) \to x_1 = x_2)$$

A function $f : X \mapsto Y$ is **onto** (or **surjective**) iff

for every element $y \in Y$ there is an element $x \in X$ with f(x) = y

A function $f : X \mapsto Y$ is **one-to-one correspondence** (or **bijective**) iff

it is both one-to-one and onto

If $f : X \mapsto Y$ is a bijection, then if we reverse the arrows we get a bijection

If $f : X \mapsto Y$ is a bijection, then if we reverse the arrows we get a bijection

ICP 5-24 Can we say this when *f* is not one-to-one? a) Yes b) No

If $f : X \mapsto Y$ is a bijection, then if we reverse the arrows we get a bijection

If $f : X \mapsto Y$ is a bijection, then if we reverse the arrows we get a bijection

If $f: X \mapsto Y$ is a bijection, then if we reverse the arrows we get a bijection

If $f: X \mapsto Y$ is a bijection, $f^{-1}: Y \mapsto X$ is the inverse function such that $f^{-1}(b) = a$, when f(a) = b

If an inverse exists, then $f(a) = b \leftrightarrow f^{-1}(b) = a$

Let $f : \mathbb{R} \mapsto \mathbb{R}$ be

$$f(x) = 2x - 3$$

Is f a bijection? What is f^{-1} ?

For any $y \in \mathbb{R}$, since $y+3/2 \in \mathbb{R}$ and f(y+3/2) = y

 \triangleright so f is onto

$$f(x_1) = f(x_2) \rightarrow 2(x_1) - 3 = 2(x_2) - 3 \rightarrow x_1 = x_2$$

> so f is one-to-one

Hence, f is a bijection

Suppose $f^{-1}(y) = x$ Let y = 2x - 3 and solve for x, we get

$$f^{-1}(y) = y + 3/2$$

ICP 5-27

Let $f : \mathbb{R}^- \mapsto \mathbb{R}^+$ be

$$f(x) = x^2$$

Is f a bijection? What is f^{-1} ?

 $\mathbb{R}^- = \{ x \in \mathbb{R} \mid x \le 0 \}$ and $\mathbb{R}^+ = \{ x \in \mathbb{R} \mid x \ge 0 \}$

 $f^{-1}(y) = -\sqrt{y}$

Composing functions

The output of one function can be used as input to another function

Restriction on range and domain

Let $g : A \mapsto B$ and let $f : B \mapsto C$

The composition of the functions f and g is a function, $(f \circ g) : A \mapsto C$ is

 $(f \circ g)(a) = f(g(a))$

- The output of g is input to f
- Range of g (actual outputs) must be a subset of domain of f

Composition

• Let
$$f : \mathbb{R} \mapsto \mathbb{R}$$
 be $f(x) := x^3$

• Let
$$g: \mathbb{Z} \mapsto \mathbb{Z}$$
 be $g(x) := x^2$

•
$$(f \circ g)(x) : \mathbb{Z} \mapsto \mathbb{R}$$

 $(f \circ g)(x) = f(g(x)) = f(x^2) = (x^2)^3 = x^6$

What will be $(g \circ f)$?

Range of inner function must be a subset of domain of outer function

Composition

• Let
$$f : \mathbb{Z} \mapsto \mathbb{Z}$$
 be $f(x) := x^3$

• Let
$$g: \mathbb{Z} \mapsto \mathbb{Z}$$
 be $g(x) := x^2$

•
$$(f \circ g)(x) : \mathbb{Z} \mapsto \mathbb{Z}$$

 $(f \circ g)(x) = f(g(x)) = f(x^2) = (x^2)^3 = x^6$

$$(g \circ f)(x) : \mathbb{Z} \mapsto \mathbb{Z}$$

$$(g \circ f)(x) = g(f(x)) = g(x^3) = (x^3)^2 = x^6$$

Composition

• Let
$$f: \mathbb{Z} \mapsto \mathbb{Z}$$
 be $f(x) := x^2$

• Let
$$g:\mathbb{Z}\mapsto\mathbb{Z}$$
 be $g(x):=2x$

$$\blacksquare \quad \textbf{ICP 5-28} \quad (f \circ g)(x) : \mathbb{Z} \mapsto \mathbb{Z}$$

 $(f \circ g)(x) = f(g(x)) = f(2x) = (2x)^2 = 4x^2$

ICP 5-29
$$(g \circ f)(x) : \mathbb{Z} \mapsto \mathbb{Z}$$

 $(g \circ f)(x) = g(f(x)) = g(x^2) = 2(x^2) = 2x^2$

 $(f \circ g)(\cdot)$ is not necessarily the same as $(g \circ f)(\cdot)$

Sometimes, the other side of composition may not even be possible

A function can be composed with itself

Let $f : \mathbb{Z} \mapsto \mathbb{Z}$ be

$$f(x) = x + 1$$

$$(f \circ f)(x) = f(f(x)) = f(x+1) = (x+1)+1 = x+2$$

Composing function with itself repeatedly

A function can be composed with itself multiple times

 $f:\mathbb{Z}\mapsto\mathbb{Z}$ be

$$f(x) = x+1$$

 $(f \circ (f \circ f))(x) = f(f(f(x))) = f(f(x+1)) = f(x+2) = x+3$

Let *father* : $People \mapsto People$ be defined as

father(x) = father of x

father(father(father(x))) = great grand father of x

Composing function with it's inverse

When a function is invertible (when it's a bijection), then it can be composed with it's inverse

If
$$f = g^{-1}$$
, then $(f \circ g)(x) = f(g(x)) = g^{-1}(g(x)) = x$

Let $f : \mathbb{Z} \mapsto \mathbb{Z}$ be f(x) = x + 1Let $g : \mathbb{Z} \mapsto \mathbb{Z}$ be g(x) = x - 1

 $\triangleright f = g^{-1}$

$$f \circ g(x) = f(g(x)) = f(x-1) = (x-1)+1 = x$$

Function inverse and composition: Summary

- If *f* : *X* → *Y* is a bijection, then if we reverse the arrows we get a bijection too
- If f : X → Y is a bijection, f⁻¹ : Y → X is the inverse function such that f⁻¹(b) = a, when f(a) = b
- Let $g : A \mapsto B$ and let $f : B \mapsto C$. The composition of the functions f and g is a function, $(f \circ g) : A \mapsto C$ is $(f \circ g)(a) = f(g(a))$
- Function can be composed with itself (multiple times) and with it's inverse