Discrete Mathematics

Functions

- Ordered tuples and Cartesian Product
- Function and Representations
- Types of Functions
- Composition and Inverse of Function

■ Numeric Functions

Imdad ullah Khan

Types of functions: Review

A function $f: X \mapsto Y$ is one-to-one (or injective) iff

$$
\forall x_{1}, x_{2} \in X\left(f\left(x_{1}\right)=f\left(x_{2}\right) \rightarrow x_{1}=x_{2}\right)
$$

A function $f: X \mapsto Y$ is onto (or surjective) iff
for every element $y \in Y$ there is an element $x \in X$ with $f(x)=y$

A function $f: X \mapsto Y$ is one-to-one correspondence (or bijective) iff it is both one-to-one and onto

Inverse of a function

$$
\text { If } f: X \mapsto Y \text { is a bijection, then if we reverse the arrows we get a bijection }
$$

bijection
onto
one-to-one

Inverse of a function

If $f: X \mapsto Y$ is a bijection, then if we reverse the arrows we get a bijection

ICP 5-24 Can we say this when f is not one-to-one? a) Yes b) No

Not bijection
onto
not one-to-one

Inverse of a function

If $f: X \mapsto Y$ is a bijection, then if we reverse the arrows we get a bijection

ICP 5-25 Can we say this when f is not onto?
a) $Y e s$
b) No

Not bijection
not onto
one-to-one

Inverse of a function

If $f: X \mapsto Y$ is a bijection, then if we reverse the arrows we get a bijection

ICP 5-26 Can we say this when f is neither?
a) Yes
b) No

Not bijection
not onto
not one-to-one

Inverse of function

If $f: X \mapsto Y$ is a bijection, then if we reverse the arrows we get a bijection

If $f: X \mapsto Y$ is a bijection, $f^{-1}: Y \mapsto X$ is the inverse function such that

$$
f^{-1}(b)=a, \text { when } f(a)=b
$$

If an inverse exists, then $\quad f(a)=b \leftrightarrow f^{-1}(b)=a$

Inverse of function

Let $f: \mathbb{R} \mapsto \mathbb{R}$ be

$$
f(x)=2 x-3
$$

Is f a bijection? What is f^{-1} ?
For any $y \in \mathbb{R}$, since $y+3 / 2 \in \mathbb{R}$ and $f(y+3 / 2)=y$
\triangleright so f is onto
$f\left(x_{1}\right)=f\left(x_{2}\right) \rightarrow 2\left(x_{1}\right)-3=2\left(x_{2}\right)-3 \rightarrow x_{1}=x_{2}$
\triangleright so f is one-to-one
Hence, f is a bijection
Suppose $f^{-1}(y)=x$
Let $y=2 x-3$ and solve for x, we get

$$
f^{-1}(y)=y+3 / 2
$$

Inverse of function

ICP 5-27

Let $f: \mathbb{R}^{-} \mapsto \mathbb{R}^{+}$be

$$
f(x)=x^{2}
$$

Is f a bijection? What is f^{-1} ?

$$
\mathbb{R}^{-}=\{x \in \mathbb{R} \mid x \leq 0\} \quad \text { and } \quad \mathbb{R}^{+}=\{x \in \mathbb{R} \mid x \geq 0\}
$$

$$
f^{-1}(y)=-\sqrt{y}
$$

Composing functions

The output of one function can be used as input to another function
\triangleright Restriction on range and domain
Let $g: A \mapsto B$ and let $f: B \mapsto C$
The composition of the functions f and g is a function, $(f \circ g): A \mapsto C$ is

$$
(f \circ g)(a)=f(g(a))
$$

- The output of g is input to f
- Range of g (actual outputs) must be a subset of domain of f

Composition

- Let $f: \mathbb{R} \mapsto \mathbb{R}$ be $f(x):=x^{3}$

■ Let $g: \mathbb{Z} \mapsto \mathbb{Z}$ be $g(x):=x^{2}$

■ $(f \circ g)(x): \mathbb{Z} \mapsto \mathbb{R}$

$$
(f \circ g)(x)=f(g(x))=f\left(x^{2}\right)=\left(x^{2}\right)^{3}=x^{6}
$$

What will be $(g \circ f)$?

Range of inner function must be a subset of domain of outer function

Composition

- Let $f: \mathbb{Z} \mapsto \mathbb{Z}$ be $f(x):=x^{3}$

■ Let $g: \mathbb{Z} \mapsto \mathbb{Z}$ be $g(x):=x^{2}$

■ $(f \circ g)(x): \mathbb{Z} \mapsto \mathbb{Z}$

$$
(f \circ g)(x)=f(g(x))=f\left(x^{2}\right)=\left(x^{2}\right)^{3}=x^{6}
$$

$■(g \circ f)(x): \mathbb{Z} \mapsto \mathbb{Z}$

$$
(g \circ f)(x)=g(f(x))=g\left(x^{3}\right)=\left(x^{3}\right)^{2}=x^{6}
$$

Composition

- Let $f: \mathbb{Z} \mapsto \mathbb{Z}$ be $f(x):=x^{2}$
- Let $g: \mathbb{Z} \mapsto \mathbb{Z}$ be $g(x):=2 x$
- ICP 5-28 $(f \circ g)(x): \mathbb{Z} \mapsto \mathbb{Z}$

$$
(f \circ g)(x)=f(g(x))=f(2 x)=(2 x)^{2}=4 x^{2}
$$

- ICP 5-29 $(g \circ f)(x): \mathbb{Z} \mapsto \mathbb{Z}$

$$
(g \circ f)(x)=g(f(x))=g\left(x^{2}\right)=2\left(x^{2}\right)=2 x^{2}
$$

$(f \circ g)(\cdot)$ is not necessarily the same as $(g \circ f)(\cdot)$

Sometimes, the other side of composition may not even be possible

Composing function with itself

A function can be composed with itself

Let $f: \mathbb{Z} \mapsto \mathbb{Z}$ be

$$
f(x)=x+1
$$

$$
(f \circ f)(x)=f(f(x))=f(x+1)=(x+1)+1=x+2
$$

Composing function with itself repeatedly

A function can be composed with itself multiple times
$f: \mathbb{Z} \mapsto \mathbb{Z}$ be

$$
f(x)=x+1
$$

$(f \circ(f \circ f))(x)=f(f(f(x)))=f(f(x+1))=f(x+2)=x+3$

Let father : People \mapsto People be defined as

$$
\text { father }(x)=\text { father of } x
$$

father $($ father $(\operatorname{father}(x)))=$ great grand father of x

Composing function with it's inverse

When a function is invertible (when it's a bijection), then it can be composed with it's inverse

$$
\text { If } f=g^{-1} \text {, then }(f \circ g)(x)=f(g(x))=g^{-1}(g(x))=x
$$

Let $f: \mathbb{Z} \mapsto \mathbb{Z}$ be $f(x)=x+1$
Let $g: \mathbb{Z} \mapsto \mathbb{Z}$ be $g(x)=x-1$

$$
\triangleright f=g^{-1}
$$

$$
f \circ g(x)=f(g(x))=f(x-1)=(x-1)+1=x
$$

Function inverse and composition: Summary

■ If $f: X \mapsto Y$ is a bijection, then if we reverse the arrows we get a bijection too

- If $f: X \mapsto Y$ is a bijection, $f^{-1}: Y \mapsto X$ is the inverse function such that $f^{-1}(b)=a$, when $f(a)=b$

■ Let $g: A \mapsto B$ and let $f: B \mapsto C$. The composition of the functions f and g is a function, $(f \circ g): A \mapsto C$ is $(f \circ g)(a)=f(g(a))$

- Function can be composed with itself (multiple times) and with it's inverse

