Functions

- Ordered tuples and Cartesian Product
- Function and Representations
- Types of Functions
- Composition and Inverse of Function
- Numeric Functions

Imdad ullah Khan

Functions: Summary

• $f: X \mapsto Y$ maps each element of X to exactly one element of Y

- Let $f: X \mapsto Y$ and let f(x) = y
 - X is the domain of f
 - Y is the codomain of f
 - y is the image of x
 - x is the pre-image of y
 - Range of f: set of images of all elements of X
 - Functions can be represented by
 - Listing set of all (pre-image, image) ordered pairs
 - Bipartite Graph
 - Mapping Rule or Algebraic Expression
 - Programming Code

A function $f : X \mapsto Y$ is **one-to-one** (or **injective**) iff $\forall x_1, x_2 \in X \ (f(x_1) = f(x_2) \rightarrow x_1 = x_2)$

Each element of X is mapped to a unique element of Y

Think of the contrapositive

$$\forall x_1, x_2 \in X \ \left(x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)\right)$$

Not one-to-one $f(x_2) = f(x_5)$

Let $f : \mathbb{Z} \mapsto \mathbb{Z}$ be

f(x) = 2x - 3

Is f one-to-one?

$$f(x_1) = f(x_2) \rightarrow 2(x_1) - 3 = 2(x_2) - 3 \rightarrow x_1 = x_2$$

Hence, f is one-to-one

Which of the following functions is one-to-one?

ICP 5-9	$f:\mathbb{Z}\mapsto\mathbb{R},\ f(x)=x^2$	a) True	b) False
ICP 5-10	$f:\mathbb{R}\mapsto\mathbb{R},\ f(x)=x^3$	a) True	b) False
ICP 5-11	$f:\mathbb{Z}\mapsto\mathbb{Z},\;f(x)=2x$	a) True	b) False
ICP 5-12	$f:\mathbb{Z}\mapsto\mathbb{N},\ f(x)= x $	a) True	b) False
ICP 5-13	f : people \mapsto people, f(x) = father of x	a) True	b) False

A function $f : X \mapsto Y$ is **onto** (or **surjective**) iff

for every element $y \in Y$ there is an element $x \in X$ with f(x) = y

Each element of Y is assigned to some element of X

$$\forall y \in Y \exists x \in X f(x) = y$$

Range = codomain

onto

onto

not onto

Which of the following functions is onto?

ICP 5-14	$f:\mathbb{Z}\mapsto\mathbb{R},\ f(x)=x^2$	a) True	b) False
ICP 5-15	$f:\mathbb{R}\mapsto\mathbb{R},\ f(x)=x^3$	a) True	b) False
ICP 5-16	$f:\mathbb{Z}\mapsto\mathbb{Z},\ f(x)=2x$	a) True	b) False
ICP 5-17	$f:\mathbb{Z}\mapsto\mathbb{N},\ f(x)= x $	a) True	b) False
ICP 5-18	f : people \mapsto people, f(x) = father of x	a) True	b) False

Let $f : \mathbb{Z} \mapsto \mathbb{Z}$ be

f(x) = 2x - 3

What is the range of f? Is f onto?

We characterize range(f) (a set) from the definition of f and check if it equals codomain

$$y \in range(f) \leftrightarrow y = 2x - 3$$
 $x \in \mathbb{Z}$
 $\leftrightarrow y = 2(x - 2) + 1$
 $\leftrightarrow y \text{ is odd}$

 $range(f) \neq codomain(f)$

Hence, f is not onto

A function $f : X \mapsto Y$ is one-to-one correspondence (or bijective) iff

it is both one-to-one and onto

- Each element of X is mapped to a unique element of Y
- Each element of Y is assigned to some element of X

- if X and Y are finite sets, then |X| = |Y|
- |domain| = |codomain|

Not bijection

onto

not one-to-one

Not bijection

not onto

not one-to-one

bijection

onto

one-to-one

Not bijection

not onto

one-to-one

Which of the following functions is a bijection?

ICP 5-19	$f:\mathbb{Z}\mapsto\mathbb{R},\ f(x)=x^2$	a) True	b) False
ICP 5-20	$f:\mathbb{R}\mapsto\mathbb{R},\ f(x)=x^3$	a) True	b) False
ICP 5-21	$f:\mathbb{Z}\mapsto\mathbb{Z},\ f(x)=2x$	a) True	b) False
ICP 5-22	$f:\mathbb{Z}\mapsto\mathbb{N},\ f(x)= x $	a) True	b) False
ICP 5-23	f : people \mapsto people, f(x) = father of x	a) True	b) False

Let $f : \mathbb{R} \mapsto \mathbb{R}$ be

f(x) = 2x - 3

Is f a bijection?

• For any
$$y \in \mathbb{R}$$
, since $y+3/2 \in \mathbb{R}$ and $f(y+3/2) = y$
 \triangleright so

•
$$f(x_1) = f(x_2) \rightarrow 2(x_1) - 3 = 2(x_2) - 3 \rightarrow x_1 = x_2$$

 \triangleright so f is one-to-one

f is onto

• Hence, f is a bijection

If $f : X \mapsto Y$ is a bijection and X and Y are finite sets, then |X| = |Y|

What can we conclude about $|X| \oslash |Y|$,

1 when *f* is one-to-one?

2 when f is onto?

Types of functions: Summary

A function $f : X \mapsto Y$ is **one-to-one** (or **injective**) iff

$$\forall x_1, x_2 \in X \ (f(x_1) = f(x_2) \to x_1 = x_2)$$

A function $f : X \mapsto Y$ is **onto** (or **surjective**) iff

for every element $y \in Y$ there is an element $x \in X$ with f(x) = y

A function $f : X \mapsto Y$ is **one-to-one correspondence** (or **bijective**) iff

it is both one-to-one and onto

If $f : X \mapsto Y$ is a bijection and X and Y are finite sets, then |X| = |Y|