Discrete Mathematics

Functions

- Ordered tuples and Cartesian Product
- Function and Representations
- Types of Functions
- Composition and Inverse of Function

■ Numeric Functions

Imdad ullah Khan

Functions: Summary

■ $f: X \mapsto Y$ maps each element of X to exactly one element of Y
Let $f: X \mapsto Y$ and let $f(x)=y$

- X is the domain of f
- Y is the codomain of f
- y is the image of x
- x is the pre-image of y
- Range of f : set of images of all elements of X
- Functions can be represented by

■ Listing set of all (pre-image, image) ordered pairs

- Bipartite Graph
- Mapping Rule or Algebraic Expression
- Programming Code

Types of functions: One-to-One

A function $f: X \mapsto Y$ is one-to-one (or injective) iff

$$
\forall x_{1}, x_{2} \in X \quad\left(f\left(x_{1}\right)=f\left(x_{2}\right) \rightarrow x_{1}=x_{2}\right)
$$

Each element of X is mapped to a unique element of Y
Think of the contrapositive

$$
\forall x_{1}, x_{2} \in X \quad\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)
$$

Types of functions: One-to-One

Not one-to-one $f\left(x_{2}\right)=f\left(x_{5}\right)$

Types of functions: One-to-One

one-to-one

Types of functions: One-to-One

one-to-one

Types of functions: One-to-One

Let $f: \mathbb{Z} \mapsto \mathbb{Z}$ be

$$
f(x)=2 x-3
$$

Is f one-to-one?
$f\left(x_{1}\right)=f\left(x_{2}\right) \rightarrow 2\left(x_{1}\right)-3=2\left(x_{2}\right)-3 \rightarrow x_{1}=x_{2}$

Hence, f is one-to-one

Types of functions: One-to-One

Which of the following functions is one-to-one?

ICP 5-9 $f: \mathbb{Z} \mapsto \mathbb{R}, f(x)=x^{2}$
a) True
b) False

ICP 5-10 $f: \mathbb{R} \mapsto \mathbb{R}, f(x)=x^{3}$
a) True
b) False

ICP 5-11 $f: \mathbb{Z} \mapsto \mathbb{Z}, f(x)=2 x$
a) True
b) False

ICP 5-12 $f: \mathbb{Z} \mapsto \mathbb{N}, f(x)=|x|$
a) True
b) False

ICP 5-13 f : people \mapsto people, $f(x)=$ father of x
a) True
b) False

Types of functions: Onto

A function $f: X \mapsto Y$ is onto (or surjective) iff for every element $y \in Y$ there is an element $x \in X$ with $f(x)=y$

Each element of Y is assigned to some element of X

$$
\forall y \in Y \exists x \in X \quad f(x)=y
$$

Range $=$ codomain

Types of functions: Onto

onto

Types of functions: Onto

Types of functions: Onto

not onto

Types of functions: Onto

Which of the following functions is onto?

ICP 5-14 $f: \mathbb{Z} \mapsto \mathbb{R}, f(x)=x^{2}$
a) True
b) False

ICP 5-15 $f: \mathbb{R} \mapsto \mathbb{R}, f(x)=x^{3}$
a) True
b) False

ICP 5-16 $f: \mathbb{Z} \mapsto \mathbb{Z}, f(x)=2 x$

ICP 5-17 $f: \mathbb{Z} \mapsto \mathbb{N}, f(x)=|x|$
a) True
b) False

ICP 5-18 f : people \mapsto people, $f(x)=$ father of x
a) True
b) False

Types of functions: Onto

Let $f: \mathbb{Z} \mapsto \mathbb{Z}$ be

$$
f(x)=2 x-3
$$

What is the range of f ? Is f onto?

We characterize range(f) (a set) from the definition of f and check if it equals codomain

$$
\begin{aligned}
y \in \operatorname{range}(f) & \leftrightarrow y=2 x-3 \\
& \leftrightarrow y=2(x-2)+1 \\
& \leftrightarrow y \text { is odd }
\end{aligned}
$$

range $(f) \neq \operatorname{codomain}(f)$
Hence, f is not onto

Types of functions: Bijection

A function $f: X \mapsto Y$ is one-to-one correspondence (or bijective) iff it is both one-to-one and onto

- Each element of X is mapped to a unique element of Y

■ Each element of Y is assigned to some element of X

■ if X and Y are finite sets, then $|X|=|Y|$
■ |domain $|=|$ codomain \mid

Types of functions: Bijection

Not bijection
onto
not one-to-one

Types of functions: Bijection

Not bijection
not onto
not one-to-one

Types of functions: Bijection

bijection

onto
one-to-one

Types of functions: Bijection

Not bijection
not onto
one-to-one

Types of functions: Bijection

Which of the following functions is a bijection?

ICP 5-19 $f: \mathbb{Z} \mapsto \mathbb{R}, f(x)=x^{2}$
a) True
b) False

ICP 5-20 $f: \mathbb{R} \mapsto \mathbb{R}, f(x)=x^{3}$
a) True
b) False

ICP 5-21 $f: \mathbb{Z} \mapsto \mathbb{Z}, f(x)=2 x$
a) True
b) False

ICP 5-22 $f: \mathbb{Z} \mapsto \mathbb{N}, f(x)=|x|$
a) True
b) False

ICP 5-23 f : people \mapsto people, $f(x)=$ father of x
a) True
b) False

Types of functions: Bijection

Let $f: \mathbb{R} \mapsto \mathbb{R}$ be

$$
f(x)=2 x-3
$$

Is f a bijection?

■ For any $y \in \mathbb{R}$, since $y+3 / 2 \in \mathbb{R}$ and $f(y+3 / 2)=y$
\triangleright so f is onto
■ $f\left(x_{1}\right)=f\left(x_{2}\right) \rightarrow 2\left(x_{1}\right)-3=2\left(x_{2}\right)-3 \rightarrow x_{1}=x_{2}$
\triangleright so f is one-to-one

- Hence, f is a bijection

Types of functions: Cardinalities

If $f: X \mapsto Y$ is a bijection and X and Y are finite sets, then $|X|=|Y|$

What can we conclude about $|X| \oslash|Y|$,

1 when f is one-to-one?
2 when f is onto?

Types of functions: Summary

A function $f: X \mapsto Y$ is one-to-one (or injective) iff

$$
\forall x_{1}, x_{2} \in X\left(f\left(x_{1}\right)=f\left(x_{2}\right) \rightarrow x_{1}=x_{2}\right)
$$

A function $f: X \mapsto Y$ is onto (or surjective) iff
for every element $y \in Y$ there is an element $x \in X$ with $f(x)=y$

A function $f: X \mapsto Y$ is one-to-one correspondence (or bijective) iff it is both one-to-one and onto

If $f: X \mapsto Y$ is a bijection and X and Y are finite sets, then $|X|=|Y|$

