Discrete Mathematics

Functions

- Ordered tuples and Cartesian Product
- Function and Representations
- Types of Functions
- Composition and Inverse of Function

■ Numeric Functions

Imdad ullah Khan

Ordered tuples

The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is an ordered collection of n objects

- Unlike sets order matters here

■ Notation: $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ unlike $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$

- Repetition matters too
- More like $\mathrm{C}++/$ Java arrays, except for type restriction is not applied

Ordered tuples

The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is an ordered collection of n objects

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \text { means } a_{i}=b_{i} \text { for } 1 \leq i \leq n
$$

- $(1,2,9)=(1,2,9)$
- (1, apple, 8 , car $) \neq(1$, apple, car, 8$)$
- $(3,5,7) \neq(3,5,7,11)$

Which one of the following is true?
ICP 5-1
$(3,5,7,11)=(3,7,5,11)$
a) True
b) False
ICP 5-2
$(3,5,5,7) \neq(3,5,7)$
ICP 5-3 $(3,5,5,7)=(3,5,7,5)$
ICP 5-4 $(x, A) \neq(A, x)$
a) True
b) False

Cartesian Product

Ordered 2-tuples ($n=2$) are called ordered pairs
Cartesian product of sets A and B is the set of all ordered pairs (x, y), where $x \in A$ and $y \in B$
$A \times B=\{(x, y) \mid(x \in A) \wedge(y \in B)\}$
\triangleright Also known as the cross product
$S=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $G=\{A, B\}$

$$
S \times G=\left\{\left(x_{1}, A\right),\left(x_{1}, B\right),\left(x_{2}, A\right),\left(x_{2}, B\right),\left(x_{3}, A\right),\left(x_{3}, B\right)\right\}
$$

$\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$: the Cartesian plane or Euclidean Plane
\triangleright Cartesian product of \mathbb{R} (x-axis) and \mathbb{R} (y-axis)

Cartesian Product

$$
X=\{1,2\}, \quad Y=\{a, b, c\}
$$

■ $X \times Y=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\}$

- $Y \times X=\{(a, 1),(a, 2),(b, 1),(b, 2),(c, 1),(c, 2)\}$
- $X \times X=\{(1,1),(1,2),(2,1),(2,2)\}$
- $X \times \emptyset=\emptyset$
$\square \emptyset \times X=\emptyset$
ICP 5-5 Generally, $A \times B=B \times A$?
a) True
b) False
$A \times B \neq B \times A$ unless $A=\emptyset$ or $B=\emptyset$ or $A=B$

Cartesian Product of more than two sets

Readily generalize to more than 2 sets
$A=\{p, q\}, \quad B=\{i, j\}, \quad C=\{4,5,6\}$

$$
\begin{aligned}
A \times B \times C= & \{(p, i, 4),(p, i, 5),(p, i, 6),(p, j, 4),(p, j, 5),(p, j, 6), \\
& (q, i, 4),(q, i, 5),(q, i, 6),(q, j, 4),(q, j, 5),(q, j, 6)\}
\end{aligned}
$$

Cardinality of Cartesian product is the product of cardinalities

$$
\left|A_{1} \times A_{2} \times \ldots \times A_{n}\right|=\left|A_{1}\right| \times\left|A_{2}\right| \times \ldots \times\left|A_{n}\right|
$$

Ordered Tuples and Cartesian Product: Summary

$■$ Ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is an ordered collection of n objects
$\square\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ means $a_{i}=b_{i}$ for $1 \leq i \leq n$

- Ordered 2-tuples $(n=2)$ are called ordered pairs
- Cartesian product of sets A and $B, A \times B$ is the set of all ordered pairs (x, y), where $x \in A$ and $y \in B$
- Cartesian product can be generalized to that of more than 2 sets

■ $\left|A_{1} \times A_{2} \times \ldots \times A_{n}\right|=\left|A_{1}\right| \times\left|A_{2}\right| \times \ldots \times\left|A_{n}\right|$

