Discrete Mathematics

Set Theory

- Sets: Definition, Universal Set, Complement, Cardinality
- Subset and Power Set
- Sets Operations
- Set Equality
- Characteristic Vectors: Sets as Bit-Vectors

■ Multisets

Imdad ullah Khan

Multiset

A multiset is an unordered collection of objects where repetition of the elements matters

- $A:\{1,2,2,2,3,3\}$

■ $B:\{C S 100, C S 100, C S 100, C S 210, C S 210\}$
■ C : the multiset of last names of the all professors in LUMS

Order of elements is not significant

- $\{1,2,2,3\}$ is the same as $\{2,3,1,2\}$

Repetition counts!

- $\{1,2,2,2,3\}$ is not the same as $\{1,2,3\}$

Multisets: Terminology

- Multiset is also termed as bag or mset

■ Number of instances of each element in a multiset is called multiplicity

An infinite number of multisets exist which contain only elements a and b, but vary in the multiplicities of their elements

- $\{a, b\}$
- $\{a, a, b\}$

■ $\{a, a, a, b, b, b\}$
All of these are different multisets
All of these represent the same set

Multisets: Multiplicity

Multisets can be represented as a set of ordered pairs $\left(x, m_{A}(x)\right)$

- x is an element in the multiset A
- $m_{A}(x)$ is the multiplicity of x in the multiset A
$\{a, a, b, b, b\} \quad \longrightarrow \quad\{(a, 2),(b, 3)\}$
$\{1,2,3,2,1\} \quad \longrightarrow \quad\{(1,2),(2,2),(3,1)\}$
$\{$ Khan, Ali, Khan, Ali, Ayesha $\} \quad \longrightarrow \quad\{($ Ayesha, 1$),($ Khan, 2$),($ Ali, 2$)\}$

Multisets: Support and Cardinality

The support of a multiset A in a universe U is the underlying set of A

$$
\operatorname{support}(A)=\left\{x \in U \mid m_{A}(x)>0\right\}
$$

$A=\{($ Ayesha, 2$),($ Khan, 2$),($ Ali, 1$)\} \Longrightarrow \operatorname{support}(A)=\{$ Ayesha, Khan, Ali $\}$

The cardinality of a multiset A is the sum of multiplicities of its elements

$$
\begin{gathered}
A=\{(\text { Ayesha }, 2),(\text { Khan }, 2),(\text { Ali }, 1)\} \\
|A|=2+2+1=5
\end{gathered}
$$

$$
|\operatorname{Support}(A)|=3
$$

Multisets: Inclusion

A multiset A is included in the multiset B if $\forall x \in U, m_{A}(x) \leq m_{B}(x)$
denoted as $A \subseteq B$
$A=\{($ Ayesha, 2$),($ Khan, 2$),($ Ali, 1$)\}$
$B=\{($ Ayesha, 3$),($ Khan, 2$),($ Ali, 2$),(I m d a d, 1)\}$

Is $A \subseteq B$?

Is $B \subseteq A$?

Multisets: Union

The union of a multiset A and a multiset B is a multiset C such that

$$
\forall x \in U, m_{C}(x)=\max \left(m_{A}(x), m_{B}(x)\right)
$$

```
denoted as C = A\cupB
```

$A=\{($ Ayesha, 2$),($ Khan, 2$),($ Ali, 1$)\}$
$B=\{($ Ayesha, 3$),($ Ali, 2$),($ Imdad, 1$)\}$
$A \cup B=\{($ Ayesha, 3$),($ Ali, 2$),($ Imdad, 1$),($ Khan, 2$)\}$

Multisets: Intersection

The intersection of a multiset A and a multiset B is a multiset C such that

$$
\forall x \in U, m_{C}(x)=\min \left(m_{A}(x), m_{B}(x)\right)
$$

```
denoted as C=A\capB
```

$A=\{($ Ayesha, 2$),($ Khan, 2$),($ Ali, 1$)\}$
$B=\{($ Ayesha, 3$),($ Ali, 2$),($ Imdad, 1$)\}$
$A \cap B=\{($ Ayesha, 2$),($ Ali, 1$)\}$

Multisets: Sum

The sum of a multiset A and a multiset B is a multiset C such that

$$
\forall x \in U, m_{C}(x)=m_{A}(x)+m_{B}(x)
$$

denoted as $C=A \sqcup B$
$A=\{($ Ayesha, 2$),($ Khan, 2$),($ Ali, 1$)\}$
$B=\{($ Ayesha, 3$),($ Ali, 2$),($ Imdad, 1$)\}$
$A \sqcup B=\{($ Ayesha, 5$),($ Ali, 3$),($ Imdad, 1$),($ Khan, 2$)\}$

Sum of two multisets (\sqcup) is also known as disjoint union

Multisets: Difference

The difference of a multiset B from a multiset A is a multiset C such that

$$
\forall x \in U, m_{C}(x)=\max \left(m_{A}(x)-m_{B}(x), 0\right)
$$

denoted as $C=A \backslash B$
$A=\{($ Ayesha, 5$),($ Khan, 2$),($ Ali, 1$)\}$
$B=\{($ Ayesha, 3$),($ Ali, 2$),($ Imdad, 1$)\}$
$A \backslash B=\{($ Ayesha, 2),$($ Khan, 2$)\}$

The Set-of-Words Vector Model for Text Representation

Set-of-Words: Documents represented by vectors $\in\{0,1\}^{|\Sigma|}$

Anthony Julius | The Hamlet Othello Macbeth |
| :---: |
| and |
| and |
| Cleopatra |

ANTHONY	1	1	0	0	0	1
BRUTUS	1	1	0	1	0	0
CAESAR	1	1	0	1	1	1
CALPURNIA	0	1	0	0	0	0
CLEOPATRA	1	0	0	0	0	0
MERCY	1	0	1	1	1	1
WORSER	1	0	1	1	1	0

The Bag of words Vector Model for Text Representation

Bag-of-Words: Documents represented by term-frequency vectors $\in \mathbb{N}^{|\Sigma|}$

Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	\ldots
157	73	0	0	0	1	
4	157	0	2	0	0	
232	227	0	2	1	0	
0	10	0	0	0	0	
57	0	0	0	0	0	
2	0	3	8	5	8	
2	0	1	1	1	5	

