Set Theory

- Sets: Definition, Universal Set, Complement, Cardinality
- Subset and Power Set
- Sets Operations
- Set Equality
- Characteristic Vectors: Sets as Bit-Vectors
- Multisets

Imdad ullah Khan

Multiset

A multiset is an unordered collection of objects where repetition of the elements matters

- $A : \{1, 2, 2, 2, 3, 3\}$
- *B* : {*CS*100, *CS*100, *CS*100, *CS*210, *CS*210}
- C : the multiset of last names of the all professors in LUMS

Order of elements is not significant

 \blacksquare $\{1,2,2,3\}$ is the same as $\{2,3,1,2\}$

Repetition counts!

• $\{1, 2, 2, 2, 3\}$ is not the same as $\{1, 2, 3\}$

Multisets: Terminology

- Multiset is also termed as bag or mset
- Number of instances of each element in a multiset is called multiplicity

An infinite number of multisets exist which contain only elements a and b, but vary in the multiplicities of their elements

- {*a*, *b*}
- {*a*, *a*, *b*}
- $\{a, a, a, b, b, b\}$

All of these are different multisets

All of these represent the same set

Multisets: Multiplicity

Multisets can be represented as a set of ordered pairs $(x, m_A(x))$

- x is an element in the multiset A
- $m_A(x)$ is the multiplicity of x in the multiset A
- $\{a, a, b, b, b\} \longrightarrow \{(a, 2), (b, 3)\}$
- $\{1,2,3,2,1\} \quad \longrightarrow \quad \big\{(1,2),(2,2),(3,1)\big\}$

 $\{Khan, Ali, Khan, Ali, Ayesha\} \longrightarrow \{(Ayesha, 1), (Khan, 2), (Ali, 2)\}$

Multisets: Support and Cardinality

The support of a multiset A in a universe U is the underlying set of A

$$support(A) = \{x \in U \,|\, m_A(x) > 0\}$$

 $A = \big\{ (Ayesha, 2), (Khan, 2), (Ali, 1) \big\} \implies support(A) = \{Ayesha, Khan, Ali\}$

The cardinality of a multiset A is the sum of multiplicities of its elements

$$A = \{(Ayesha, 2), (Khan, 2), (Ali, 1)\}$$

$$|A| = 2 + 2 + 1 = 5$$

|Support(A)| = 3

Multisets: Inclusion

A multiset A is included in the multiset B if $\forall x \in U, m_A(x) \leq m_B(x)$

denoted as $A \subseteq B$

$$A = \{(Ayesha, 2), (Khan, 2), (Ali, 1)\}$$

$$B = \{(Ayesha, 3), (Khan, 2), (Ali, 2), (Imdad, 1)\}$$

Is $A \subseteq B$?

Is $B \subseteq A$?

Multisets: Union

The union of a multiset A and a multiset B is a multiset C such that $\forall x \in U, \ m_C(x) = max(m_A(x), m_B(x))$

denoted as $C = A \cup B$

$$A = \{(Ayesha, 2), (Khan, 2), (Ali, 1)\}$$

$$B = \{(Ayesha, 3), (Ali, 2), (Imdad, 1)\}$$

$$A \cup B = \{(Ayesha, 3), (Ali, 2), (Imdad, 1), (Khan, 2)\}$$

Multisets: Intersection

The intersection of a multiset A and a multiset B is a multiset C such that $\forall x \in U, \ m_C(x) = \min(m_A(x), m_B(x))$

denoted as $C = A \cap B$

$$A = \{(Ayesha, 2), (Khan, 2), (Ali, 1)\}$$

$$B = \{(Ayesha, 3), (Ali, 2), (Imdad, 1)\}$$

$$A \cap B = \{(Ayesha, 2), (Ali, 1)\}$$

Multisets: Sum

The sum of a multiset A and a multiset B is a multiset C such that $\forall x \in U, \ m_C(x) = m_A(x) + m_B(x)$

denoted as $C = A \sqcup B$

$$A = \{ (Ayesha, 2), (Khan, 2), (Ali, 1) \}$$

$$B = \{ (Ayesha, 3), (Ali, 2), (Imdad, 1) \}$$

 $A \sqcup B = \{(Ayesha, 5), (Ali, 3), (Imdad, 1), (Khan, 2)\}$

Sum of two multisets (\Box) is also known as disjoint union

Multisets: Difference

The difference of a multiset *B* from a multiset *A* is a multiset *C* such that $\forall x \in U, \ m_C(x) = max(m_A(x) - m_B(x), 0)$

denoted as $C = A \setminus B$

$$A = \{(Ayesha, 5), (Khan, 2), (Ali, 1)\}$$

$$B = \{(Ayesha, 3), (Ali, 2), (Imdad, 1)\}$$

$$A \setminus B = \{(Ayesha, 2), (Khan, 2)\}$$

The Set-of-Words Vector Model for Text Representation

Set-of-Words: Documents represented by vectors $\in \{0,1\}^{|\Sigma|}$

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
ANTHONY	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
CAESAR	1	1	0	1	1	1	
CALPURNIA	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

. . .

The Bag of words Vector Model for Text Representation

Bag-of-Words: Documents represented by term-frequency vectors $\in \mathbb{N}^{|\Sigma|}$

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra		•				
ANTHONY	157	73	0	0	0	1	
BRUTUS	4	157	0	2	0	0	
CAESAR	232	227	0	2	1	0	
CALPURNIA	0	10	0	0	0	0	
CLEOPATRA	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

. . .