Discrete Mathematics

Set Theory

- Sets: Definition, Universal Set, Complement, Cardinality
- Subset and Power Set
- Sets Operations

■ Set Equality

- Characteristic Vectors: Sets as Bit-Vectors

■ Multisets

Imdad ullah Khan

Sets as bit-strings (bit vectors)

- Sets stored in an unordered fashion in memory
- Union/Intersection etc. are computationally expensive
- When $|U|$ is small compared to computer memory, then we can do set operations efficiently
- Impose any fixed ordering on elements of U
- $U=\{D M$, Cal, Chem, Bio, Phy, Pro $\}$ (in order)
- Sets (subsets of U) are represented by bit-string of length 6

■ Each bit signifies whether the corresponding element is in the set
■ Called bit-vector representation of sets or characteristic vector of a set

Sets as bit-strings (bit vectors)

DM	Calc	Chem	Bio	Phy	Prog

The set $\{$ Calc, Chem, Phy $\}$ is

0	1	1	0	1	0

The set $\{$ Prog, DM, Calc, Phy $\}$ is \quad| 1 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |

ICP 4-28 What is the characteristic vector of the set

$$
\{\text { Chem, DM }\} ?
$$

ICP 4-29 What is the characteristic vector of the set

$$
\{\text { Calc, DM, Chem, Phy, Prog, Bio }\} ?
$$

Sets as bit-strings (bit vectors)

DM	Calc	Chem	Bio	Phy	Prog

The set

| 1 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | is $\{D M, \operatorname{Prog}\}$

The set \quad| 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | is the empty set

ICP 4-30 What is the set corresponding to the characteristic vector

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}
$$

Sets operations using bit-strings

$$
A \cup B=\{x \mid x \in A \vee x \in B\}
$$

Sets operations using bit-strings

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

$A=\{$ Calc, Chem, Phy $\}$	0	1	1	0	1	0
$B=\{$ Prog, DM, Calc, Phy $\}$	1	1	0	0	1	1
	$A \cap B$					
	A					
\{Calc, Phy $\}$	0	1	0	0	1	0

Sets operations using bit-strings

$$
A \oplus B=\{x \mid x \in A \oplus x \in B\}
$$

$A=\{$ Calc, Chem, Phy $\}$	0	1	1	0	1	0
$B=\{$ Prog, DM, Calc, Phy $\}$	1	1	0	0	1	1
$A \oplus B$	$A \oplus B$					
\{DM, Chem, Prog	1	0	1	0	0	1

Sets as bit-vectors: Summary

- Sets can be represented as bit vectors, when universal set is 'small'
- Also called characteristic vectors of sets
- Order of U is critical

■ Sets operations can be performed using bit-wise operators of programming language

- More suitable for computer implementations
- Only feasible when U is small

