Set Theory

- Sets: Definition, Universal Set, Complement, Cardinality
- Subset and Power Set
- Sets Operations
- Set Equality
- Characteristic Vectors: Sets as Bit-Vectors
- Multisets

Imdad ullah Khan

4 3 4 3 4 3 4

Two sets are equal if and only if they have the same elements

A = B means $\forall x \ (x \in A \leftrightarrow x \in B)$

- To prove two sets A and B to be equal
- Start with one set (say A) and replace it with an equal set
- These established equalities between sets are called "set identities"
- Continue doing this until we get the set *B*

Identity	Name			
$A \cup \emptyset = A$ $A \cap U = A$	Identity Laws			
$\begin{array}{l} A \cap \emptyset \ = \ \emptyset \\ A \cup U \ = \ U \end{array}$	Domination Laws			
$A \cup A = A$ $A \cap A = A$	Idempotent Laws			

3

イロト イヨト イヨト イヨト

Identity	Name
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative Laws
$(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$	Associative Laws
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive Laws

3

イロト イヨト イヨト イヨト

Identity	Name
$\overline{\overline{(\overline{A})}} = A$	Double Complement Law
$ \begin{array}{rcl} A \cup \overline{A} &= & U \\ A \cap \overline{A} &= & \emptyset \end{array} $	Complement Laws
$\overline{\overline{A \cup B}} = \overline{A} \cap \overline{B}$ $\overline{\overline{A} \cap \overline{B}} = \overline{A} \cup \overline{B}$	De Morgan's Laws

イロト イポト イミト イミト 一日

Set Identities: Demonstration

- $U = \{1, 2, 3, 4, 5, 6\}$ $A = \{2, 3, 5\}$ $B = \{2, 3, 4\}$
 - $\overline{B} = \{1, 5, 6\}$
 - $\blacksquare \ \overline{A} \ = \ \{1,4,6\}$
 - $\bullet \ \overline{(\overline{A})} = \{2,3,5\}$
 - $A \cup \overline{A} = \{1, 2, 3, 4, 5, 6\}$
 - $\bullet \ A \cap \overline{A} = \{\}$

3

Set Identities: Demonstration

$U = \{1, 2, 3, 4, 5, 6\} \qquad A = \{2, 3, 5\} \qquad B = \{2, 3, 4\}$

- $\bullet \overline{B} = \{1,5,6\}$
- $\blacksquare \ \overline{A} \ = \ \{1,4,6\}$
- $\bullet \ \overline{(\overline{A})} = \{2,3,5\}$
- $A \cup \overline{A} = \{1, 2, 3, 4, 5, 6\}$
- $\bullet \ A \cap \overline{A} = \{\}$

- $\bullet A \cap B = \{2,3\}$
- $A \cup B = \{2, 3, 4, 5\}$
- $\bullet \overline{A \cap B} = \{1,4,5,6\}$
- $\overline{A} \cup \overline{B} = \{1, 4, 5, 6\}$

イロト 不得下 イヨト イヨト 二日

$$\overline{A \cup B} = \{1, 6\}$$

$$\overline{A} \cap \overline{B} = \{1, 6\}$$

Set Identities: Demonstration

$U = \{1, 2, 3, 4, 5, 6\} \qquad A = \{2, 3, 5\} \qquad B = \{2, 3, 4\}$

- $\bullet \ \overline{B} = \{1,5,6\}$
- $\bullet \ \overline{A} = \{1,4,6\}$
- $\overline{\overline{(A)}} = \{2,3,5\}$
- $A \cup \overline{A} = \{1, 2, 3, 4, 5, 6\}$
- $\bullet \ A \cap \overline{A} = \{\}$

- $\bullet A \cap B = \{2,3\}$
- $A \cup B = \{2, 3, 4, 5\}$
- $\bullet \overline{A \cap B} = \{1,4,5,6\}$
- $\overline{A} \cup \overline{B} = \{1, 4, 5, 6\}$

イロト 不得下 イヨト イヨト 二日

$$\overline{A \cup B} = \{1, 6\}$$

$$\overline{A} \cap \overline{B} = \{1, 6\}$$

$\overline{A\cup B\cup C}\ =\ \overline{A}\cap\overline{B}\cap\overline{C}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

$\overline{A\cup B\cup C}\ =\ \overline{A}\cap\overline{B}\cap\overline{C}$

$$LHS = \overline{A \cup B \cup C}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

$\overline{A\cup B\cup C}\ =\ \overline{A}\cap\overline{B}\cap\overline{C}$

$$LHS = \overline{A \cup B \cup C}$$
$$= \overline{A} \cap \overline{(B \cup C)}$$

DeMorgan's Law

- 4 回 ト 4 三 ト 4 三 ト

$\overline{A\cup B\cup C}\ =\ \overline{A}\cap\overline{B}\cap\overline{C}$

$$LHS = \overline{A \cup B \cup C}$$
$$= \overline{A} \cap \overline{(B \cup C)}$$
$$= \overline{A} \cap (\overline{B} \cap \overline{C})$$

DeMorgan's Law

DeMorgan's Law

<日

<</p>

$\overline{A\cup B\cup C}\ =\ \overline{A}\cap\overline{B}\cap\overline{C}$

$$LHS = \overline{A \cup B \cup C}$$
$$= \overline{A} \cap \overline{(B \cup C)}$$
$$= \overline{A} \cap (\overline{B} \cap \overline{C})$$
$$= \overline{A} \cap \overline{B} \cap \overline{C}$$

DeMorgan's Law

DeMorgan's Law

Associative Law

<日

<</p>

$\overline{A\cup B\cup C} \;=\; \overline{A}\cap \overline{B}\cap \overline{C}$

$$LHS = \overline{A \cup B \cup C}$$

$$= \overline{A} \cap \overline{(B \cup C)}$$

$$= \overline{A} \cap (\overline{B} \cap \overline{C})$$

$$= \overline{A} \cap \overline{B} \cap \overline{C}$$

= RHS

DeMorgan's Law

DeMorgan's Law

Associative Law

<日

<</p>

Two sets are equal if and only if they have the same elements

A = B means $\forall x \ (x \in A \leftrightarrow x \in B)$

- To prove two sets A and B to be equal
- We directly prove the above definition of equality
- For *every element* x ∈ U, we prove that it is either both in A and B or none of them
- When A and B are defined in terms of sets operations on other sets, every element x ∈ U means all types of elements

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

- 4 回 ト - 4 三 ト

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

element type	A	B	C
x_1	1	1	1
x_2	1	1	0
$egin{array}{c} x_2 \ x_3 \end{array}$	1	0	1
$egin{array}{c} x_4 \ x_5 \end{array}$	1	0	0
x_5	0	1	1
x_6	0	1	0
x_6 x_7 x_8	0	0	1
x_8	0	0	0

· · · · · · · · ·

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

A	В	С			
1	1	1			
1	1	0			
1	0	1			
1	0	0			
0	1	1			
0	1	0			
0	0	1			
0	0	0			

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

■ For very element x ∈ U there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

A	В	С	$B \cup C$		
1	1	1			
1	1	0			
1	0	1			
1	0	0			
0	1	1			
0	1	0			
0	0	1			
0	0	0			

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

■ For very element x ∈ U there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

A	В	С	$B \cup C$	
1	1	1	1	
1	1	0	1	
1	0	1	1	
1	0	0	0	
0	1	1	1	
0	1	0	1	
0	0	1	1	
0	0	0	0	

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

■ For very element x ∈ U there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

A	В	С	$B \cup C$	$A \cap (B \cup C)$		
1	1	1	1			
1	1	0	1			
1	0	1	1			
1	0	0	0			
0	1	1	1			
0	1	0	1			
0	0	1	1			
0	0	0	0			

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

■ For very element x ∈ U there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

A	В	С	$B \cup C$	$A \cap (B \cup C)$		
1	1	1	1	1		
1	1	0	1	1		
1	0	1	1	1		
1	0	0	0	0		
0	1	1	1	0		
0	1	0	1	0		
0	0	1	1	0		
0	0	0	0	0		

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

■ For very element x ∈ U there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

A	В	С	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	
1	1	1	1	1		
1	1	0	1	1		
1	0	1	1	1		
1	0	0	0	0		
0	1	1	1	0		
0	1	0	1	0		
0	0	1	1	0		
0	0	0	0	0		

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

■ For very element x ∈ U there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

A	В	С	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	
1	1	1	1	1	1	
1	1	0	1	1	1	
1	0	1	1	1	0	
1	0	0	0	0	0	
0	1	1	1	0	0	
0	1	0	1	0	0	
0	0	1	1	0	0	
0	0	0	0	0	0	

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

■ For very element x ∈ U there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

A	В	С	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	
1	1	1	1	1	1		
1	1	0	1	1	1		
1	0	1	1	1	0		
1	0	0	0	0	0		
0	1	1	1	0	0		
0	1	0	1	0	0		
0	0	1	1	0	0		
0	0	0	0	0	0		

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

A	В	С	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	
1	1	1	1	1	1	1	
1	1	0	1	1	1	0	
1	0	1	1	1	0	1	
1	0	0	0	0	0	0	
0	1	1	1	0	0	0	
0	1	0	1	0	0	0	
0	0	1	1	0	0	0	
0	0	0	0	0	0	0	

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

■ For very element x ∈ U there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

A	В	С	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
1	1	1	1	1	1	1	
1	1	0	1	1	1	0	
1	0	1	1	1	0	1	
1	0	0	0	0	0	0	
0	1	1	1	0	0	0	
0	1	0	1	0	0	0	
0	0	1	1	0	0	0	
0	0	0	0	0	0	0	

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

■ For very element x ∈ U there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

A	В	С	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

Prove using membership table that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by 0/1) in some combination of A, B, and C

A	В	С	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

For each type of element in U the entries in red columns are the same

イロト イポト イヨト イヨト

Prove using membership table that $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$

Prove using membership table that $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$

A	В	С			
1	1	1			
1	1	0			
1	0	1			
1	0	0			
0	1	1			
0	1	0			
0	0	1			
0	0	0			

Prove using membership table that $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$

A	В	С	$A \setminus C$		
1	1	1			
1	1	0			
1	0	1			
1	0	0			
0	1	1			
0	1	0			
0	0	1			
0	0	0			

Prove using membership table that $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$

A	В	С	$A \setminus C$		
1	1	1	0		
1	1	0	1		
1	0	1	0		
1	0	0	1		
0	1	1	0		
0	1	0	0		
0	0	1	0		
0	0	0	0		

Prove using membership table that $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$

A	В	С	$A \setminus C$	$B \setminus C$		
1	1	1	0			
1	1	0	1			
1	0	1	0			
1	0	0	1			
0	1	1	0			
0	1	0	0			
0	0	1	0			
0	0	0	0			

Prove using membership table that $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$

A	В	С	$A \setminus C$	$B \setminus C$	
1	1	1	0	0	
1	1	0	1	1	
1	0	1	0	0	
1	0	0	1	0	
0	1	1	0	0	
0	1	0	0	1	
0	0	1	0	0	
0	0	0	0	0	

Prove using membership table that $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$

A	В	С	$A \setminus C$	$B \setminus C$	$(A \setminus C) \cup (B \setminus C)$	
1	1	1	0	0		
1	1	0	1	1		
1	0	1	0	0		
1	0	0	1	0		
0	1	1	0	0		
0	1	0	0	1		
0	0	1	0	0		
0	0	0	0	0		

Prove using membership table that $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$

A	В	С	$A \setminus C$	$B \setminus C$	$(A \setminus C) \cup (B \setminus C)$	
1	1	1	0	0	0	
1	1	0	1	1	1	
1	0	1	0	0	0	
1	0	0	1	0	1	
0	1	1	0	0	0	
0	1	0	0	1	1	
0	0	1	0	0	0	
0	0	0	0	0	0	

Prove using membership table that $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$

A	В	С	$A \setminus C$	$B \setminus C$	$(A \setminus C) \cup (B \setminus C)$	$A \cup B$	
1	1	1	0	0	0		
1	1	0	1	1	1		
1	0	1	0	0	0		
1	0	0	1	0	1		
0	1	1	0	0	0		
0	1	0	0	1	1		
0	0	1	0	0	0		
0	0	0	0	0	0		

Prove using membership table that $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$

A	В	С	$A \setminus C$	$B \setminus C$	$(A \setminus C) \cup (B \setminus C)$	$A \cup B$	
1	1	1	0	0	0	1	
1	1	0	1	1	1	1	
1	0	1	0	0	0	1	
1	0	0	1	0	1	1	
0	1	1	0	0	0	1	
0	1	0	0	1	1	1	
0	0	1	0	0	0	0	
0	0	0	0	0	0	0	

Prove using membership table that $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$

A	В	С	$A \setminus C$	$B \setminus C$	$(A \setminus C) \cup (B \setminus C)$	$A \cup B$	$(A \cup B) \setminus C$
1	1	1	0	0	0	1	
1	1	0	1	1	1	1	
1	0	1	0	0	0	1	
1	0	0	1	0	1	1	
0	1	1	0	0	0	1	
0	1	0	0	1	1	1	
0	0	1	0	0	0	0	
0	0	0	0	0	0	0	

Prove using membership table that $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$

A	В	С	$A \setminus C$	$B \setminus C$	$(A \setminus C) \cup (B \setminus C)$	$A \cup B$	$(A \cup B) \setminus C$
1	1	1	0	0	0	1	0
1	1	0	1	1	1	1	1
1	0	1	0	0	0	1	0
1	0	0	1	0	1	1	1
0	1	1	0	0	0	1	0
0	1	0	0	1	1	1	1
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0

Prove using membership table that $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$

A	В	С	$A \setminus C$	$B \setminus C$	$(A \setminus C) \cup (B \setminus C)$	$A \cup B$	$(A \cup B) \setminus C$
1	1	1	0	0	0	1	0
1	1	0	1	1	1	1	1
1	0	1	0	0	0	1	0
1	0	0	1	0	1	1	1
0	1	1	0	0	0	1	0
0	1	0	0	1	1	1	1
0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0

Two sets are equal if and only if they have the same elements

A = B means $\forall x \ (x \in A \leftrightarrow x \in B)$

Two sets are equal if and only if they have the same elements

A = B means $\forall x \ (x \in A \leftrightarrow x \in B)$

- To prove two sets *R* and *S* to be equal
- Prove that the membership predicate of R is logically equivalent to the membership predicate of S
- Recall the membership predicate decides whether or not x is in a set
- When the two membership predicates are logically equivalent, for any x they will either both be True or both be False
- We get that $\forall x \ (x \in R \leftrightarrow x \in S)$ is true

・ 同 ト ・ ヨ ト ・ ヨ ト

Prove using logical equivalences that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Prove using logical equivalences that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $x \in A \cap (B \cup C)$

 \triangleright LHS

Prove using logical equivalences that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $x \in A \cap (B \cup C)$ $\equiv x \in A \land x \in (B \cup C)$

▷ I HS

Intersection

Prove using logical equivalences that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $x \in A \cap (B \cup C)$ \triangleright LHS $\equiv x \in A \land x \in (B \cup C)$ \triangleright Intersection $\equiv x \in A \land (x \in B \lor x \in C)$ \triangleright Union

Prove using logical equivalences that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $x \in A \cap (B \cup C)$ \triangleright LHS $\equiv x \in A \land x \in (B \cup C)$ \triangleright Intersection $\equiv x \in A \land (x \in B \lor x \in C)$ \triangleright Union $\equiv (x \in A \land x \in B) \lor (x \in A \land x \in C)$ \triangleright Distributive Law

イロト イポト イヨト イヨト

Prove using logical equivalences that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

$x\in A\cap (B\cup C)$	⊳ LHS
$\equiv x \in A \land x \in (B \cup C)$	▷ Intersection
$\equiv x \in A \land (x \in B \lor x \in C)$	⊳ Union
\equiv ($x \in A \land x \in B$) \lor ($x \in A \land x \in C$)	▷ Distributive Law
$\equiv x \in (A \cap B) \lor x \in (A \cap C)$	▷ Intersection

Prove using logical equivalences that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

$x \in A \cap (B \cup C)$	⊳ LHS
$\equiv x \in A \land x \in (B \cup C)$	▷ Intersection
$\equiv x \in A \land (x \in B \lor x \in C)$	⊳ Union
$\equiv (x \in A \land x \in B) \lor (x \in A \land x \in C)$	▷ Distributive Law
$\equiv x \in (A \cap B) \lor x \in (A \cap C)$	▷ Intersection
$\equiv x \in (A \cap B) \cup (A \cap C)$	⊳ Union

Two sets R and S are equal if $R \subseteq S$ and $S \subseteq R$

э

イロト イボト イヨト イヨト

Two sets R and S are equal if $R \subseteq S$ and $S \subseteq R$

- To prove R = S
- Prove $R \subseteq S$ and
- Prove $S \subseteq R$
- By the above definition we get that R = S

- 4 回 ト 4 ヨ ト 4 ヨ ト

Proving using subset relations that $\overline{(A \cup C) \cap B} = \overline{B} \cup (\overline{C} \cap \overline{A})$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Proving using subset relations that $\overline{(A \cup C) \cap B} = \overline{B} \cup (\overline{C} \cap \overline{A})$

$$(X \subseteq Y) \land (Y \subseteq X) \equiv X = Y$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Proving using subset relations that $\overline{(A \cup C) \cap B} = \overline{B} \cup (\overline{C} \cap \overline{A})$

$$(X \subseteq Y) \land (Y \subseteq X) \equiv X = Y$$

First show that

 $\boxed{1} \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A})$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proving using subset relations that $\overline{(A \cup C) \cap B} = \overline{B} \cup (\overline{C} \cap \overline{A})$

$$(X \subseteq Y) \land (Y \subseteq X) \equiv X = Y$$

First show that

$$1 \overline{(A \cup C) \cap B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A})$$

Next show that

$$2 \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq \overline{(A \cup C) \cap B}$$

э

- 4 回 ト 4 三 ト 4 三 ト

We need to prove that

$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-26 Prove **1** : if $x \in \overline{(A \cup C) \cap B}$, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

э

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-26 Prove **1** : if
$$x \in \overline{(A \cup C) \cap B}$$
, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

$x \in \overline{(A \cup C) \cap B}$

э

ICP-4-26 Prove 1 : if
$$x \in \overline{(A \cup C) \cap B}$$
, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

C)

$$x \in \overline{(A \cup C) \cap B} \begin{cases} x \notin B \\ x \notin (A \cup C) \cap B \\ x \notin (A \cup C) \cap B \end{cases}$$

.

イロト イポト イヨト イヨト

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-26 Prove 1 : if
$$x \in \overline{(A \cup C) \cap B}$$
, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

$$x \in \overline{(A \cup C) \cap B} \begin{cases} x \notin B & x \in \overline{B} \\ x \notin (A \cup C) \cap B \\ x \notin (A \cup C) \end{cases}$$

э

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-26 Prove 1 : if
$$x \in \overline{(A \cup C) \cap B}$$
, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

$$x \in \overline{(A \cup C) \cap B} \begin{cases} x \notin B & x \in \overline{B} \\ x \notin (A \cup C) \cap B \\ x \notin (A \cup C) \cap B \end{cases} x \notin (A \cup C) \end{cases}$$

.

э

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-26 Prove 1 : if
$$x \in \overline{(A \cup C) \cap B}$$
, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

$$x \in \overline{(A \cup C) \cap B} \begin{cases} x \notin B & x \in \overline{B} \\ x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \\ x \notin (A \cup C) \cap B \\ x \notin (A \cup C) \end{cases} \qquad x \notin A \land x \notin C \\ x \notin (A \cup C) \end{cases}$$

/

э

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-26 Prove
$$1$$
 : if $x \in \overline{(A \cup C) \cap B}$, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

$$x \in \overline{(A \cup C) \cap B} \begin{cases} x \notin B & x \in \overline{B} \\ x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \\ x \notin (A \cup C) \cap B \\ x \notin (A \cup C) & x \in \overline{A} \cap \overline{C} \end{cases}$$

.

э

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-26 Prove
$$1$$
 : if $x \in \overline{(A \cup C) \cap B}$, then $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$

$$x \in \overline{(A \cup C) \cap B} \begin{cases} x \notin B & x \in \overline{B} \\ x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \\ x \notin (A \cup C) \cap B \end{cases} \begin{cases} x \notin A \land x \notin C \\ x \notin (A \cup C) & x \in \overline{A} \cap \overline{C} \\ x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \end{cases}$$

.

э

We need to prove that

$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-27 Prove 2 : if $x \in \overline{B} \cup (\overline{C} \cap \overline{A})$, then $x \in \overline{(A \cup C) \cap B}$

э

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-27 Prove 2 : if
$$x \in \overline{B} \cup (\overline{C} \cap \overline{A})$$
, then $x \in \overline{(A \cup C) \cap B}$

$$x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \in \overline{B} \\ \\ x \in \overline{C} \cap \overline{A} \end{cases}$$

1

э

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-27 Prove 2 : if
$$x \in \overline{B} \cup (\overline{C} \cap \overline{A})$$
, then $x \in \overline{(A \cup C) \cap B}$

 $x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \in \overline{B} \\ x \in \overline{C} \cap \overline{A} \end{cases}$

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-27 Prove 2 : if
$$x \in \overline{B} \cup (\overline{C} \cap \overline{A})$$
, then $x \in \overline{(A \cup C) \cap B}$

$$x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \notin B \\ x \in \overline{B} & x \notin (A \cup C) \cap B \\ x \in \overline{C} \cap \overline{A} \end{cases}$$

э

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-27 Prove 2 : if
$$x \in \overline{B} \cup (\overline{C} \cap \overline{A})$$
, then $x \in \overline{(A \cup C) \cap B}$

$$x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \notin B \\ x \in \overline{B} \\ x \in \overline{C} \cap \overline{A} \end{cases}$$

э

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-27 Prove 2 : if
$$x \in \overline{B} \cup (\overline{C} \cap \overline{A})$$
, then $x \in \overline{(A \cup C) \cap B}$

$$x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \notin B \\ x \in \overline{B} & x \notin (A \cup C) \cap B \\ x \in \overline{(A \cup C)} \cap B \\ x \notin C \land x \notin A \\ x \in \overline{C} \cap \overline{A} \end{cases}$$

э

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-27 Prove 2 : if
$$x \in \overline{B} \cup (\overline{C} \cap \overline{A})$$
, then $x \in \overline{(A \cup C) \cap B}$

$$x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \notin B \\ x \in \overline{B} \\ x \in \overline{C} \cap \overline{A} \end{cases} x \notin (A \cup C) \cap B \\ x \notin C \land x \notin A \\ x \in \overline{C} \cap \overline{A} \end{cases} x \notin C \cup A$$

э

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-27 Prove 2 : if
$$x \in \overline{B} \cup (\overline{C} \cap \overline{A})$$
, then $x \in \overline{(A \cup C) \cap B}$

$$x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \notin B \\ x \in \overline{B} & x \notin (A \cup C) \cap B \\ x \in \overline{(A \cup C)} \cap B \\ x \notin C \land x \notin A \\ x \notin \overline{C} \cap \overline{A} & x \notin C \cup A \\ x \notin (A \cup C) \cap B \end{cases}$$

э

$$\boxed{1} (\overline{A \cup C}) \cap \overline{B} \subseteq \overline{B} \cup (\overline{C} \cap \overline{A}) \qquad \boxed{2} \overline{B} \cup (\overline{C} \cap \overline{A}) \subseteq (\overline{A \cup C}) \cap \overline{B}$$

ICP-4-27 Prove 2 : if
$$x \in \overline{B} \cup (\overline{C} \cap \overline{A})$$
, then $x \in \overline{(A \cup C) \cap B}$

$$x \in \overline{B} \cup (\overline{C} \cap \overline{A}) \begin{cases} x \notin B \\ x \in \overline{B} & x \notin (A \cup C) \cap B \\ x \in \overline{(A \cup C)} \cap B \\ x \notin C \land x \notin A \\ x \notin C \cup A \\ x \notin C \cup A \\ x \notin (A \cup C) \cap B \\ x \in \overline{(A \cup C)} \cap B \end{cases}$$

э

Set Equality

Equality of two sets can be proved using

- Algebraic Rules (Set Identities)
- Set Membership Tables
- Logical Equivalence of membership predicates
- By proving bidirectional subset relationships