## Discrete Mathematics

## Set Theory

- Sets: Definition, Universal Set, Complement, Cardinality
- Subset and Power Set
- Sets Operations
- Set Equality
- Characteristic Vectors: Sets as Bit-Vectors

■ Multisets

Imdad ullah Khan

## Set Equality using Identities

Two sets are equal if and only if they have the same elements

$$
A=B \quad \text { means } \quad \forall x(x \in A \leftrightarrow x \in B)
$$

- To prove two sets $A$ and $B$ to be equal
- Start with one set (say $A$ ) and replace it with an equal set
- These established equalities between sets are called "set identities"

■ Continue doing this until we get the set $B$

## Set Identities

| Identity | Name |
| :--- | :--- |
| $A \cup \emptyset=A$ | Identity Laws |
| $A \cap U=A$ |  |
| $A \cap \emptyset=\emptyset$ | Domination Laws |
| $A \cup U=U$ |  |
| $A \cup A=A$ | Idempotent Laws |
| $A \cap A=A$ |  |

## Set Identities

Identity
$A \cup B=B \cup A$
$A \cap B=B \cap A$
Name

Commutative Laws
$(A \cup B) \cup C=A \cup(B \cup C)$ $(A \cap B) \cap C=A \cap(B \cap C)$

$$
\begin{array}{ll}
A \cap(B \cup C)=(A \cap B) \cup(A \cap C) & \text { Distributive Laws } \\
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{array}
$$

## Set Identities

| Identity | Name |
| :--- | :--- |
| $\overline{(\bar{A})}=A$ | Double Complement Law |
| $A \cup \bar{A}=U$ | Complement Laws |
| $A \cap \bar{A}=\emptyset$ |  |
| $\overline{A \cup B}=\bar{A} \cap \bar{B}$ | De Morgan's Laws |
| $\overline{A \cap B}=\bar{A} \cup \bar{B}$ |  |

## Set Identities: Demonstration

$$
U=\{1,2,3,4,5,6\} \quad A=\{2,3,5\} \quad B=\{2,3,4\}
$$

- $\bar{B}=\{1,5,6\}$
- $\bar{A}=\{1,4,6\}$
- $\overline{(\bar{A})}=\{2,3,5\}$
- $A \cup \bar{A}=\{1,2,3,4,5,6\}$
- $A \cap \bar{A}=\{ \}$


## Set Identities: Demonstration

$$
U=\{1,2,3,4,5,6\} \quad A=\{2,3,5\} \quad B=\{2,3,4\}
$$

- $\bar{B}=\{1,5,6\}$
- $\bar{A}=\{1,4,6\}$
- $\overline{(\bar{A})}=\{2,3,5\}$
- $A \cup \bar{A}=\{1,2,3,4,5,6\}$
- $A \cap \bar{A}=\{ \}$
- $A \cap B=\{2,3\}$
- $A \cup B=\{2,3,4,5\}$
- $\overline{A \cap B}=\{1,4,5,6\}$
- $\bar{A} \cup \bar{B}=\{1,4,5,6\}$
- $\overline{A \cup B}=\{1,6\}$
- $\bar{A} \cap \bar{B}=\{1,6\}$


## Set Identities: Demonstration

$$
U=\{1,2,3,4,5,6\} \quad A=\{2,3,5\} \quad B=\{2,3,4\}
$$

- $\bar{B}=\{1,5,6\}$
- $A \cap B=\{2,3\}$
- $\bar{A}=\{1,4,6\}$
- $\overline{(\bar{A})}=\{2,3,5\}$
- $A \cup \bar{A}=\{1,2,3,4,5,6\}$
- $A \cap \bar{A}=\{ \}$
- $A \cup B=\{2,3,4,5\}$

■ $\overline{A \cap B}=\{1,4,5,6\}$

- $\bar{A} \cup \bar{B}=\{1,4,5,6\}$
- $\overline{A \cup B}=\{1,6\}$

■ $\bar{A} \cap \bar{B}=\{1,6\}$

- ICP 4-23 $B \cap \bar{B}=$ ?
- ICP 4-24 $B \cup \bar{B}=$ ?
- ICP 4-25 $(\bar{B})=$ ?


## Set Equalities using Identities

Show using set identities that

$$
\overline{A \cup B \cup C}=\bar{A} \cap \bar{B} \cap \bar{C}
$$

## Set Equalities using Identities

Show using set identities that

$$
\overline{A \cup B \cup C}=\bar{A} \cap \bar{B} \cap \bar{C}
$$

$$
L H S=\overline{A \cup B \cup C}
$$

## Set Equalities using Identities

Show using set identities that

$$
\overline{A \cup B \cup C}=\bar{A} \cap \bar{B} \cap \bar{C}
$$

$$
\begin{aligned}
L H S & =\overline{A \cup B \cup C} \\
& =\bar{A} \cap \overline{(B \cup C)}
\end{aligned}
$$

DeMorgan's Law

## Set Equalities using Identities

Show using set identities that

$$
\overline{A \cup B \cup C}=\bar{A} \cap \bar{B} \cap \bar{C}
$$

$$
\begin{aligned}
L H S & =\overline{A \cup B \cup C} \\
& =\bar{A} \cap \overline{(B \cup C)} \\
& =\bar{A} \cap(\bar{B} \cap \bar{C})
\end{aligned}
$$

DeMorgan's Law
DeMorgan's Law

## Set Equalities using Identities

Show using set identities that

$$
\overline{A \cup B \cup C}=\bar{A} \cap \bar{B} \cap \bar{C}
$$

$$
\begin{aligned}
L H S & =\overline{A \cup B \cup C} \\
& =\bar{A} \cap \overline{(B \cup C)} \\
& =\bar{A} \cap(\bar{B} \cap \bar{C}) \\
& =\bar{A} \cap \bar{B} \cap \bar{C}
\end{aligned}
$$

DeMorgan's Law

DeMorgan's Law
Associative Law

## Set Equalities using Identities

Show using set identities that

$$
\overline{A \cup B \cup C}=\bar{A} \cap \bar{B} \cap \bar{C}
$$

$$
\begin{aligned}
L H S & =\overline{A \cup B \cup C} & & \\
& =\bar{A} \cap \overline{(B \cup C)} & & \text { DeMorgan's Law } \\
& =\bar{A} \cap(\bar{B} \cap \bar{C}) & & \text { DeMorgan's Law } \\
& =\bar{A} \cap \bar{B} \cap \bar{C} & & \text { Associative Law } \\
& =R H S & &
\end{aligned}
$$

## Set Equalities using Membership Table

Two sets are equal if and only if they have the same elements

$$
A=B \quad \text { means } \quad \forall x(x \in A \leftrightarrow x \in B)
$$

- To prove two sets $A$ and $B$ to be equal
- We directly prove the above definition of equality
$\square$ For every element $x \in U$, we prove that it is either both in $A$ and $B$ or none of them
- When $A$ and $B$ are defined in terms of sets operations on other sets, every element $x \in U$ means all types of elements


## Set Equalities using Membership Table

Prove using membership table that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by $0 / 1$ ) in some combination of $A, B$, and $C$

## Set Equalities using Membership Table

Prove using membership table that $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by $0 / 1$ ) in some combination of $A, B$, and $C$


| element type | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $x_{1}$ | 1 | 1 | 1 |
| $x_{2}$ | 1 | 1 | 0 |
| $x_{3}$ | 1 | 0 | 1 |
| $x_{4}$ | 1 | 0 | 0 |
| $x_{5}$ | 0 | 1 | 1 |
| $x_{6}$ | 0 | 1 | 0 |
| $x_{7}$ | 0 | 0 | 1 |
| $x_{8}$ | 0 | 0 | 0 |

## Set Equalities using Membership Table

Prove using membership table that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

- For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by $0 / 1$ ) in some combination of $A, B$, and $C$


## Set Equalities using Membership Table

Prove using membership table that $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

- For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by $0 / 1$ ) in some combination of $A, B$, and $C$

| $A$ | $B$ | $C$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 |  |  |  |  |  |
| 1 | 1 | 0 |  |  |  |  |  |
| 1 | 0 | 1 |  |  |  |  |  |
| 1 | 0 | 0 |  |  |  |  |  |
| 0 | 1 | 1 |  |  |  |  |  |
| 0 | 1 | 0 |  |  |  |  |  |
| 0 | 0 | 1 |  |  |  |  |  |
| 0 | 0 | 0 |  |  |  |  |  |

## Set Equalities using Membership Table

Prove using membership table that $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

- For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by $0 / 1$ ) in some combination of $A, B$, and $C$

| $A$ | $B$ | $C$ | $B \cup C$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 |  |  |  |  |  |
| 1 | 1 | 0 |  |  |  |  |  |
| 1 | 0 | 1 |  |  |  |  |  |
| 1 | 0 | 0 |  |  |  |  |  |
| 0 | 1 | 1 |  |  |  |  |  |
| 0 | 1 | 0 |  |  |  |  |  |
| 0 | 0 | 1 |  |  |  |  |  |
| 0 | 0 | 0 |  |  |  |  |  |

## Set Equalities using Membership Table

Prove using membership table that $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

- For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by $0 / 1$ ) in some combination of $A, B$, and $C$

| $A$ | $B$ | $C$ | $B \cup C$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 |  |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |  |
| 1 | 0 | 1 | 1 |  |  |  |  |
| 1 | 0 | 0 | 0 |  |  |  |  |
| 0 | 1 | 1 | 1 |  |  |  |  |
| 0 | 1 | 0 | 1 |  |  |  |  |
| 0 | 0 | 1 | 1 |  |  |  |  |
| 0 | 0 | 0 | 0 |  |  |  |  |

## Set Equalities using Membership Table

Prove using membership table that $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

- For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by $0 / 1$ ) in some combination of $A, B$, and $C$

| $A$ | $B$ | $C$ | $B \cup C$ | $A \cap(B \cup C)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 |  |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |  |
| 1 | 0 | 1 | 1 |  |  |  |  |
| 1 | 0 | 0 | 0 |  |  |  |  |
| 0 | 1 | 1 | 1 |  |  |  |  |
| 0 | 1 | 0 | 1 |  |  |  |  |
| 0 | 0 | 1 | 1 |  |  |  |  |
| 0 | 0 | 0 | 0 |  |  |  |  |

## Set Equalities using Membership Table

Prove using membership table that $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

- For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by $0 / 1$ ) in some combination of $A, B$, and $C$

| $A$ | $B$ | $C$ | $B \cup C$ | $A \cap(B \cup C)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 |  |  |  |
| 1 | 1 | 0 | 1 | 1 |  |  |  |
| 1 | 0 | 1 | 1 | 1 |  |  |  |
| 1 | 0 | 0 | 0 | 0 |  |  |  |
| 0 | 1 | 1 | 1 | 0 |  |  |  |
| 0 | 1 | 0 | 1 | 0 |  |  |  |
| 0 | 0 | 1 | 1 | 0 |  |  |  |
| 0 | 0 | 0 | 0 | 0 |  |  |  |

## Set Equalities using Membership Table

Prove using membership table that $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

- For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by $0 / 1$ ) in some combination of $A, B$, and $C$

| $A$ | $B$ | $C$ | $B \cup C$ | $A \cap(B \cup C)$ | $A \cap B$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 1 | 1 | 1 | 1 | 1 |  |  |  |
| 1 | 1 | 0 | 1 | 1 |  |  |  |
| 1 | 0 | 1 | 1 | 1 |  |  |  |
| 1 | 0 | 0 | 0 | 0 |  |  |  |
| 0 | 1 | 1 | 1 | 0 |  |  |  |
| 0 | 1 | 0 | 1 | 0 |  |  |  |
| 0 | 0 | 1 | 1 | 0 |  |  |  |
| 0 | 0 | 0 | 0 | 0 |  |  |  |

## Set Equalities using Membership Table

Prove using membership table that $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

- For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by $0 / 1$ ) in some combination of $A, B$, and $C$

| $A$ | $B$ | $C$ | $B \cup C$ | $A \cap(B \cup C)$ | $A \cap B$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 |  |  |
| 1 | 1 | 0 | 1 | 1 | 1 |  |  |
| 1 | 0 | 1 | 1 | 1 | 0 |  |  |
| 1 | 0 | 0 | 0 | 0 | 0 |  |  |
| 0 | 1 | 1 | 1 | 0 | 0 |  |  |
| 0 | 1 | 0 | 1 | 0 | 0 |  |  |
| 0 | 0 | 1 | 1 | 0 | 0 |  |  |
| 0 | 0 | 0 | 0 | 0 | 0 |  |  |

## Set Equalities using Membership Table

Prove using membership table that $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

- For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by $0 / 1$ ) in some combination of $A, B$, and $C$

| $A$ | $B$ | $C$ | $B \cup C$ | $A \cap(B \cup C)$ | $A \cap B$ | $A \cap C$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 1 | 1 | 1 | 1 | 1 | 1 |  |  |
| 1 | 1 | 0 | 1 | 1 | 1 |  |  |
| 1 | 0 | 1 | 1 | 1 | 0 |  |  |
| 1 | 0 | 0 | 0 | 0 | 0 |  |  |
| 0 | 1 | 1 | 1 | 0 | 0 |  |  |
| 0 | 1 | 0 | 1 | 0 | 0 |  |  |
| 0 | 0 | 1 | 1 | 0 | 0 |  |  |
| 0 | 0 | 0 | 0 | 0 | 0 |  |  |

## Set Equalities using Membership Table

Prove using membership table that $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

- For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by $0 / 1$ ) in some combination of $A, B$, and $C$

| $A$ | $B$ | $C$ | $B \cup C$ | $A \cap(B \cup C)$ | $A \cap B$ | $A \cap C$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 1 | 1 | 0 | 1 | 1 | 1 | 0 |  |
| 1 | 0 | 1 | 1 | 1 | 0 | 1 |  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |  |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 |  |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 |  |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |

## Set Equalities using Membership Table

Prove using membership table that $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

■ For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by $0 / 1$ ) in some combination of $A, B$, and $C$

| $A$ | $B$ | $C$ | $B \cup C$ | $A \cap(B \cup C)$ | $A \cap B$ | $A \cap C$ | $(A \cap B) \cup(A \cap C)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 1 | 1 | 0 | 1 | 1 | 1 | 0 |  |
| 1 | 0 | 1 | 1 | 1 | 0 | 1 |  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |  |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 |  |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 |  |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |

## Set Equalities using Membership Table

Prove using membership table that $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

■ For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by $0 / 1$ ) in some combination of $A, B$, and $C$

| $A$ | $B$ | $C$ | $B \cup C$ | $A \cap(B \cup C)$ | $A \cap B$ | $A \cap C$ | $(A \cap B) \cup(A \cap C)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

## Set Equalities using Membership Table

Prove using membership table that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

■ For very element $x \in U$ there are exactly 8 possibilities based on it's membership (denoted by $0 / 1$ ) in some combination of $A, B$, and $C$

| $A$ | $B$ | $C$ | $B \cup C$ | $A \cap(B \cup C)$ | $A \cap B$ | $A \cap C$ | $(A \cap B) \cup(A \cap C)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

For each type of element in $U$ the entries in red columns are the same

## Set Equalities using Membership Table

Prove using membership table that $\quad(A \backslash C) \cup(B \backslash C)=(A \cup B) \backslash C$

## Set Equalities using Membership Table

Prove using membership table that $\quad(A \backslash C) \cup(B \backslash C)=(A \cup B) \backslash C$

| $A$ | $B$ | $C$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 |  |  |  |  |  |
| 1 | 1 | 0 |  |  |  |  |  |
| 1 | 0 | 1 |  |  |  |  |  |
| 1 | 0 | 0 |  |  |  |  |  |
| 0 | 1 | 1 |  |  |  |  |  |
| 0 | 1 | 0 |  |  |  |  |  |
| 0 | 0 | 1 |  |  |  |  |  |
| 0 | 0 | 0 |  |  |  |  |  |

## Set Equalities using Membership Table

Prove using membership table that $\quad(A \backslash C) \cup(B \backslash C)=(A \cup B) \backslash C$

| $A$ | $B$ | $C$ | $A \backslash C$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| 1 | 1 | 1 |  |  |  |  |  |
| 1 | 1 | 0 |  |  |  |  |  |
| 1 | 0 | 1 |  |  |  |  |  |
| 1 | 0 | 0 |  |  |  |  |  |
| 0 | 1 | 1 |  |  |  |  |  |
| 0 | 1 | 0 |  |  |  |  |  |
| 0 | 0 | 1 |  |  |  |  |  |
| 0 | 0 | 0 |  |  |  |  |  |

## Set Equalities using Membership Table

Prove using membership table that $\quad(A \backslash C) \cup(B \backslash C)=(A \cup B) \backslash C$

| $A$ | $B$ | $C$ | $A \backslash C$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 |  |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |  |
| 1 | 0 | 1 | 0 |  |  |  |  |
| 1 | 0 | 0 | 1 |  |  |  |  |
| 0 | 1 | 1 | 0 |  |  |  |  |
| 0 | 1 | 0 | 0 |  |  |  |  |
| 0 | 0 | 1 | 0 |  |  |  |  |
| 0 | 0 | 0 | 0 |  |  |  |  |

## Set Equalities using Membership Table

Prove using membership table that $\quad(A \backslash C) \cup(B \backslash C)=(A \cup B) \backslash C$

| $A$ | $B$ | $C$ | $A \backslash C$ | $B \backslash C$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 |  |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |  |
| 1 | 0 | 1 | 0 |  |  |  |  |
| 1 | 0 | 0 | 1 |  |  |  |  |
| 0 | 1 | 1 | 0 |  |  |  |  |
| 0 | 1 | 0 | 0 |  |  |  |  |
| 0 | 0 | 1 | 0 |  |  |  |  |
| 0 | 0 | 0 | 0 |  |  |  |  |

## Set Equalities using Membership Table

Prove using membership table that $(A \backslash C) \cup(B \backslash C)=(A \cup B) \backslash C$

| $A$ | $B$ | $C$ | $A \backslash C$ | $B \backslash C$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 |  |  |  |
| 1 | 1 | 0 | 1 | 1 |  |  |  |
| 1 | 0 | 1 | 0 | 0 |  |  |  |
| 1 | 0 | 0 | 1 | 0 |  |  |  |
| 0 | 1 | 1 | 0 | 0 |  |  |  |
| 0 | 1 | 0 | 0 | 1 |  |  |  |
| 0 | 0 | 1 | 0 | 0 |  |  |  |
| 0 | 0 | 0 | 0 | 0 |  |  |  |

## Set Equalities using Membership Table

Prove using membership table that $(A \backslash C) \cup(B \backslash C)=(A \cup B) \backslash C$

| $A$ | $B$ | $C$ | $A \backslash C$ | $B \backslash C$ | $(A \backslash C) \cup(B \backslash C)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 |  |  |  |
| 1 | 1 | 0 | 1 | 1 |  |  |  |
| 1 | 0 | 1 | 0 | 0 |  |  |  |
| 1 | 0 | 0 | 1 | 0 |  |  |  |
| 0 | 1 | 1 | 0 | 0 |  |  |  |
| 0 | 1 | 0 | 0 | 1 |  |  |  |
| 0 | 0 | 1 | 0 | 0 |  |  |  |
| 0 | 0 | 0 | 0 | 0 |  |  |  |

## Set Equalities using Membership Table

Prove using membership table that $(A \backslash C) \cup(B \backslash C)=(A \cup B) \backslash C$

| $A$ | $B$ | $C$ | $A \backslash C$ | $B \backslash C$ | $(A \backslash C) \cup(B \backslash C)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 | 0 |  |  |
| 1 | 1 | 0 | 1 | 1 | 1 |  |  |
| 1 | 0 | 1 | 0 | 0 | 0 |  |  |
| 1 | 0 | 0 | 1 | 0 | 1 |  |  |
| 0 | 1 | 1 | 0 | 0 | 0 |  |  |
| 0 | 1 | 0 | 0 | 1 | 1 |  |  |
| 0 | 0 | 1 | 0 | 0 | 0 |  |  |
| 0 | 0 | 0 | 0 | 0 | 0 |  |  |

## Set Equalities using Membership Table

Prove using membership table that $(A \backslash C) \cup(B \backslash C)=(A \cup B) \backslash C$

| $A$ | $B$ | $C$ | $A \backslash C$ | $B \backslash C$ | $(A \backslash C) \cup(B \backslash C)$ | $A \cup B$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 1 | 1 | 1 | 0 | 0 | 0 |  |  |
| 1 | 1 | 0 | 1 | 1 | 1 |  |  |
| 1 | 0 | 1 | 0 | 0 | 0 |  |  |
| 1 | 0 | 0 | 1 | 0 | 1 |  |  |
| 0 | 1 | 1 | 0 | 0 | 0 |  |  |
| 0 | 1 | 0 | 0 | 1 | 1 |  |  |
| 0 | 0 | 1 | 0 | 0 | 0 |  |  |
| 0 | 0 | 0 | 0 | 0 | 0 |  |  |

## Set Equalities using Membership Table

Prove using membership table that $(A \backslash C) \cup(B \backslash C)=(A \cup B) \backslash C$

| $A$ | $B$ | $C$ | $A \backslash C$ | $B \backslash C$ | $(A \backslash C) \cup(B \backslash C)$ | $A \cup B$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 |  |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 |  |
| 1 | 0 | 1 | 0 | 0 | 0 | 1 |  |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 |  |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 |  |
| 0 | 1 | 0 | 0 | 1 | 1 | 1 |  |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 |  |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |

## Set Equalities using Membership Table

Prove using membership table that $(A \backslash C) \cup(B \backslash C)=(A \cup B) \backslash C$

| $A$ | $B$ | $C$ | $A \backslash C$ | $B \backslash C$ | $(A \backslash C) \cup(B \backslash C)$ | $A \cup B$ | $(A \cup B) \backslash C$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 |  |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 |  |
| 1 | 0 | 1 | 0 | 0 | 0 | 1 |  |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 |  |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 |  |
| 0 | 1 | 0 | 0 | 1 | 1 | 1 |  |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 |  |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |

## Set Equalities using Membership Table

Prove using membership table that $(A \backslash C) \cup(B \backslash C)=(A \cup B) \backslash C$

| $A$ | $B$ | $C$ | $A \backslash C$ | $B \backslash C$ | $(A \backslash C) \cup(B \backslash C)$ | $A \cup B$ | $(A \cup B) \backslash C$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

## Set Equalities using Membership Table

Prove using membership table that $(A \backslash C) \cup(B \backslash C)=(A \cup B) \backslash C$

| $A$ | $B$ | $C$ | $A \backslash C$ | $B \backslash C$ | $(A \backslash C) \cup(B \backslash C)$ | $A \cup B$ | $(A \cup B) \backslash C$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

## Set Equalities using Logical Equivalence

Two sets are equal if and only if they have the same elements

$$
A=B \quad \text { means } \quad \forall x(x \in A \leftrightarrow x \in B)
$$

## Set Equalities using Logical Equivalence

Two sets are equal if and only if they have the same elements

$$
A=B \quad \text { means } \quad \forall x(x \in A \leftrightarrow x \in B)
$$

- To prove two sets $R$ and $S$ to be equal
- Prove that the membership predicate of $R$ is logically equivalent to the membership predicate of $S$
- Recall the membership predicate decides whether or not $x$ is in a set
- When the two membership predicates are logically equivalent, for any $x$ they will either both be True or both be False
- We get that $\forall x(x \in R \leftrightarrow x \in S)$ is true


## Set Equalities using Logical Equivalence

Prove using logical equivalences that $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

## Set Equalities using Logical Equivalence

Prove using logical equivalences that $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

$$
x \in A \cap(B \cup C)
$$

$\triangleright$ LHS

## Set Equalities using Logical Equivalence

Prove using logical equivalences that $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

$$
\begin{aligned}
& x \in A \cap(B \cup C) \\
& \equiv x \in A \wedge x \in(B \cup C)
\end{aligned}
$$

$\triangleright$ LHS
$\triangleright$ Intersection

## Set Equalities using Logical Equivalence

Prove using logical equivalences that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

$$
\begin{aligned}
& x \in A \cap(B \cup C) \\
& \equiv x \in A \wedge x \in(B \cup C) \\
& \equiv x \in A \wedge(x \in B \vee x \in C)
\end{aligned}
$$

## Set Equalities using Logical Equivalence

Prove using logical equivalences that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

$$
\begin{aligned}
& x \in A \cap(B \cup C) \\
& \equiv x \in A \wedge x \in(B \cup C) \\
& \equiv x \in A \wedge(x \in B \vee x \in C) \\
& \equiv(x \in A \wedge x \in B) \vee(x \in A \wedge x \in C)
\end{aligned}
$$

$\triangleright$ Distributive Law

## Set Equalities using Logical Equivalence

Prove using logical equivalences that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

$$
\begin{aligned}
& x \in A \cap(B \cup C) \\
& \equiv x \in A \wedge x \in(B \cup C) \\
& \equiv x \in A \wedge(x \in B \vee x \in C) \\
& \equiv(x \in A \wedge x \in B) \vee(x \in A \wedge x \in C) \\
& \equiv x \in(A \cap B) \vee x \in(A \cap C)
\end{aligned}
$$

$\triangleright$ LHS
$\triangleright$ Intersection
$\triangleright$ Union
$\triangleright$ Distributive Law
$\triangleright$ Intersection

## Set Equalities using Logical Equivalence

Prove using logical equivalences that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

$$
\begin{aligned}
& x \in A \cap(B \cup C) \\
& \equiv x \in A \wedge x \in(B \cup C) \\
& \equiv x \in A \wedge(x \in B \vee x \in C) \\
& \equiv(x \in A \wedge x \in B) \vee(x \in A \wedge x \in C) \\
& \equiv x \in(A \cap B) \vee x \in(A \cap C) \\
& \equiv x \in(A \cap B) \cup(A \cap C)
\end{aligned}
$$

$\triangleright$ LHS
$\triangleright$ Intersection
$\triangleright$ Union
$\triangleright$ Distributive Law
$\triangleright$ Intersection
$\triangleright$ Union

## Set Equality using Subset Relations

Two sets $R$ and $S$ are equal if $R \subseteq S$ and $S \subseteq R$

## Set Equality using Subset Relations

## Two sets $R$ and $S$ are equal if $R \subseteq S$ and $S \subseteq R$

- To prove $R=S$
- Prove $R \subseteq S$ and
- Prove $S \subseteq R$

■ By the above definition we get that $R=S$

## Set Equality using Subset Relations

Proving using subset relations that $\overline{(A \cup C) \cap B}=\bar{B} \cup(\bar{C} \cap \bar{A})$

## Set Equality using Subset Relations

Proving using subset relations that $\overline{(A \cup C) \cap B}=\bar{B} \cup(\bar{C} \cap \bar{A})$

$$
(X \subseteq Y) \wedge(Y \subseteq X) \equiv X=Y
$$

## Set Equality using Subset Relations

Proving using subset relations that $\quad \overline{(A \cup C) \cap B}=\bar{B} \cup(\bar{C} \cap \bar{A})$

$$
(X \subseteq Y) \wedge(Y \subseteq X) \equiv X=Y
$$

First show that

$$
1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A})
$$

## Set Equality using Subset Relations

Proving using subset relations that $\quad \overline{(A \cup C) \cap B}=\bar{B} \cup(\bar{C} \cap \bar{A})$

$$
(X \subseteq Y) \wedge(Y \subseteq X) \equiv X=Y
$$

First show that

$$
1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A})
$$

Next show that

$$
2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}
$$

## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-26 Prove 1 : if $x \in \overline{(A \cup C) \cap B}$, then $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$

## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-26 Prove 1 : if $x \in \overline{(A \cup C) \cap B}$, then $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$
$x \in \overline{(A \cup C) \cap B}$

## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-26 Prove 1 : if $x \in \overline{(A \cup C) \cap B}$, then $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$
$x \in \overline{(A \cup C) \cap B}$
$x \notin(A \cup C) \cap B$$\left\{\begin{array}{l}x \notin B \\ x \notin(A \cup C)\end{array}\right.$

## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-26 Prove 1 : if $x \in \overline{(A \cup C) \cap B}$, then $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$
$x \in \overline{(A \cup C) \cap B}$
$x \notin(A \cup C) \cap B$
$x \notin B$
$x \notin(A \cup C)$

## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-26 Prove 1 : if $x \in \overline{(A \cup C) \cap B}$, then $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$

$$
\begin{array}{ll}
x \in \overline{(A \cup C) \cap B} \\
x \notin(A \cup C) \cap B
\end{array} \begin{cases}x \notin B & x \in \bar{B} \\
& x \in \bar{B} \cup(\bar{C} \cap \bar{A}) \\
\\
x \notin(A \cup C)\end{cases}
$$

## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-26 Prove 1 : if $x \in \overline{(A \cup C) \cap B}$, then $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$

$$
\begin{array}{ll}
x \in \overline{(A \cup C) \cap B} \\
x \notin(A \cup C) \cap B
\end{array} \begin{cases}x \notin B & x \in \bar{B} \\
& x \in \bar{B} \cup(\bar{C} \cap \bar{A}) \\
x \notin(A \cup C) & x \notin A \wedge x \notin C\end{cases}
$$

## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-26 Prove 1 : if $x \in \overline{(A \cup C) \cap B}$, then $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$

$$
x \in \overline{(A \cup C) \cap B} \begin{cases}x \notin B & x \in \bar{B} \\ & x \in \bar{B} \cup(\bar{C} \cap \bar{A}) \\ & x \notin A \wedge x \notin C \\ x \notin(A \cup C) & x \in \bar{A} \cap \bar{C}\end{cases}
$$

## Set Equality using Subset Relations

We need to prove that

## $1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-26 Prove 1 : if $x \in \overline{(A \cup C) \cap B}$, then $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$
$x \in \overline{(A \cup C) \cap B} x \neq(A \cup C) \cap B \begin{cases}x \notin B & x \in \bar{B} \\ & x \in \bar{B} \cup(\bar{C} \cap \bar{A}) \\ x \notin(A \cup C) & x \notin \bar{A} \cap \bar{C} \\ & x \in \bar{B} \cup(\bar{C} \cap \bar{A})\end{cases}$

## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-27 Prove 2 : if $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$, then $x \in \overline{(A \cup C) \cap B}$

## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-27 Prove 2 : if $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$, then $x \in \overline{(A \cup C) \cap B}$


## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-27 Prove 2 : if $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$, then $x \in \overline{(A \cup C) \cap B}$


## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-27 Prove 2 : if $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$, then $x \in \overline{(A \cup C) \cap B}$


## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-27 Prove 2 : if $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$, then $x \in \overline{(A \cup C) \cap B}$
$x \in \bar{B} \cup(\bar{C} \cap \bar{A}) \begin{cases} & x \notin B \\ x \in \bar{B} \quad & x \notin(A \cup C) \cap B \\ & x \in \overline{(A \cup C) \cap B} \\ x \in \bar{C} \cap \bar{A} & \end{cases}$

## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-27 Prove 2 : if $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$, then $x \in \overline{(A \cup C) \cap B}$
$x \in \bar{B} \cup(\bar{C} \cap \bar{A}) \begin{cases} & x \notin B \\ x \in \bar{B} \quad & x \notin(A \cup C) \cap B \\ & x \in \overline{(A \cup C) \cap B} \\ & x \notin C \wedge x \notin A \\ x \in \bar{C} \cap \bar{A} & \end{cases}$

## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-27 Prove 2 : if $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$, then $x \in \overline{(A \cup C) \cap B}$
$x \in \bar{B} \cup(\bar{C} \cap \bar{A}) \begin{cases} & x \notin B \\ x \in \bar{B} \quad & x \notin(A \cup C) \cap B \\ & x \in \overline{(A \cup C) \cap B} \\ & x \notin C \wedge x \notin A \\ x \in \bar{C} \cap \bar{A} & x \notin C \cup A\end{cases}$

## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-27 Prove 2 : if $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$, then $x \in \overline{(A \cup C) \cap B}$
$x \in \bar{B} \cup(\bar{C} \cap \bar{A}) \begin{cases} & x \notin B \\ x \in \bar{B} & x \notin(A \cup C) \cap B \\ & x \in \overline{(A \cup C) \cap B} \\ & x \notin C \wedge x \notin A \\ x \in \bar{C} \cap \bar{A} & x \notin C \cup A \\ & x \notin(A \cup C) \cap B\end{cases}$

## Set Equality using Subset Relations

We need to prove that
$1 \overline{(A \cup C) \cap B} \subseteq \bar{B} \cup(\bar{C} \cap \bar{A}) \quad 2 \bar{B} \cup(\bar{C} \cap \bar{A}) \subseteq \overline{(A \cup C) \cap B}$

ICP-4-27 Prove 2 : if $x \in \bar{B} \cup(\bar{C} \cap \bar{A})$, then $x \in \overline{(A \cup C) \cap B}$
$x \in \bar{B} \cup(\bar{C} \cap \bar{A}) \begin{cases} & x \notin B \\ x \in \bar{B} & x \notin(A \cup C) \cap B \\ & x \in \overline{(A \cup C) \cap B} \\ & x \notin C \wedge x \notin A \\ x \in \bar{C} \cap \bar{A} & x \notin C \cup A \\ & x \notin(A \cup C) \cap B \\ & x \in \overline{(A \cup C) \cap B}\end{cases}$

## Set Equality

- Equality of two sets can be proved using
- Algebraic Rules (Set Identities)
- Set Membership Tables
- Logical Equivalence of membership predicates

■ By proving bidirectional subset relationships

