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Set Equality using Identities

Two sets are equal if and only if they have the same elements

A = B means ∀x (x ∈ A ↔ x ∈ B)

To prove two sets A and B to be equal

Start with one set (say A) and replace it with an equal set

These established equalities between sets are called “set identities”

Continue doing this until we get the set B
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Set Identities

Identity Name

A ∪ ∅ = A
Identity Laws

A ∩ U = A

A ∩ ∅ = ∅
Domination Laws

A ∪ U = U

A ∪ A = A
Idempotent Laws

A ∩ A = A
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Set Identities

Identity Name

A ∪ B = B ∪ A
Commutative Laws

A ∩ B = B ∩ A

(A ∪ B) ∪ C = A ∪ (B ∪ C )
Associative Laws

(A ∩ B) ∩ C = A ∩ (B ∩ C )

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )
Distributive Laws

A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )
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Set Identities

Identity Name(
A
)

= A Double Complement Law

A ∪ A = U
Complement Laws

A ∩ A = ∅

A ∪ B = A ∩ B
De Morgan’s Laws

A ∩ B = A ∪ B
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Set Identities: Demonstration

U = {1, 2, 3, 4, 5, 6} A = {2, 3, 5} B = {2, 3, 4}

B = {1, 5, 6}

A = {1, 4, 6}

(A) = {2, 3, 5}

A ∪ A = {1, 2, 3, 4, 5, 6}

A ∩ A = {}

A ∩ B = {2, 3}

A ∪ B = {2, 3, 4, 5}

A ∩ B = {1, 4, 5, 6}

A ∪ B = {1, 4, 5, 6}

A ∪ B = {1, 6}

A ∩ B = {1, 6}

ICP 4-23 B ∩ B = ?

ICP 4-24 B ∪ B = ?

ICP 4-25 (B) = ?
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Set Equalities using Identities

Show using set identities that

A ∪ B ∪ C = A ∩ B ∩ C

LHS =

A ∪ B ∪ C

= A ∩ (B ∪ C ) DeMorgan’s Law

= A ∩ (B ∩ C ) DeMorgan’s Law

= A ∩ B ∩ C Associative Law

= RHS
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Set Equalities using Membership Table

Two sets are equal if and only if they have the same elements

A = B means ∀x (x ∈ A ↔ x ∈ B)

To prove two sets A and B to be equal

We directly prove the above definition of equality

For every element x ∈ U, we prove that it is either both in A and B
or none of them

When A and B are defined in terms of sets operations on other sets,
every element x ∈ U means all types of elements
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Set Equalities using Membership Table

Prove using membership table that A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )

For very element x ∈ U there are exactly 8 possibilities based on it’s
membership (denoted by 0/1) in some combination of A,B, and C

U
A

B

C

x1

x2

x3

x4
x5

x6

x7

x8

element type A B C

x1 1 1 1
x2 1 1 0
x3 1 0 1
x4 1 0 0
x5 0 1 1
x6 0 1 0
x7 0 0 1
x8 0 0 0
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Set Equalities using Membership Table

Prove using membership table that (A \ C ) ∪ (B \ C ) = (A ∪ B) \ C

A B C

A \ C B \ C (A \ C) ∪ (B \ C) A ∪ B (A ∪ B) \ C

1 1 1

0 0 0 1 0

1 1 0

1 1 1 1 1

1 0 1

0 0 0 1 0

1 0 0

1 0 1 1 1

0 1 1

0 0 0 1 0

0 1 0

0 1 1 1 1

0 0 1

0 0 0 0 0

0 0 0

0 0 0 0 0
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Set Equalities using Logical Equivalence

Two sets are equal if and only if they have the same elements

A = B means ∀x (x ∈ A ↔ x ∈ B)

To prove two sets R and S to be equal

Prove that the membership predicate of R is logically equivalent to
the membership predicate of S

Recall the membership predicate decides whether or not x is in a set

When the two membership predicates are logically equivalent, for any
x they will either both be True or both be False

We get that ∀x (x ∈ R ↔ x ∈ S) is true
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Set Equalities using Logical Equivalence

Prove using logical equivalences that A∩ (B ∪ C ) = (A∩B)∪ (A∩ C )

x ∈ A ∩ (B ∪ C )

≡ x ∈ A ∧ x ∈ (B ∪ C )

≡ x ∈ A ∧ (x ∈ B ∨ x ∈ C )

≡ (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C )

≡ x ∈ (A ∩ B) ∨ x ∈ (A ∩ C )

≡ x ∈ (A ∩ B) ∪ (A ∩ C )

▷ LHS

▷ Intersection

▷ Union

▷ Distributive Law

▷ Intersection

▷ Union
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Set Equality using Subset Relations

Two sets R and S are equal if R ⊆ S and S ⊆ R

To prove R = S

Prove R ⊆ S and

Prove S ⊆ R

By the above definition we get that R = S
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Set Equality using Subset Relations

Proving using subset relations that (A ∪ C ) ∩ B = B ∪ (C ∩ A)

(X ⊆ Y ) ∧ (Y ⊆ X ) ≡ X = Y

First show that

1 (A ∪ C ) ∩ B ⊆ B ∪ (C ∩ A)

Next show that

2 B ∪ (C ∩ A) ⊆ (A ∪ C ) ∩ B

Imdad ullah Khan (LUMS) Set Theory 15 / 18



Set Equality using Subset Relations

Proving using subset relations that (A ∪ C ) ∩ B = B ∪ (C ∩ A)

(X ⊆ Y ) ∧ (Y ⊆ X ) ≡ X = Y

First show that

1 (A ∪ C ) ∩ B ⊆ B ∪ (C ∩ A)

Next show that

2 B ∪ (C ∩ A) ⊆ (A ∪ C ) ∩ B

Imdad ullah Khan (LUMS) Set Theory 15 / 18



Set Equality using Subset Relations

Proving using subset relations that (A ∪ C ) ∩ B = B ∪ (C ∩ A)

(X ⊆ Y ) ∧ (Y ⊆ X ) ≡ X = Y

First show that

1 (A ∪ C ) ∩ B ⊆ B ∪ (C ∩ A)

Next show that

2 B ∪ (C ∩ A) ⊆ (A ∪ C ) ∩ B

Imdad ullah Khan (LUMS) Set Theory 15 / 18



Set Equality using Subset Relations

Proving using subset relations that (A ∪ C ) ∩ B = B ∪ (C ∩ A)

(X ⊆ Y ) ∧ (Y ⊆ X ) ≡ X = Y

First show that

1 (A ∪ C ) ∩ B ⊆ B ∪ (C ∩ A)

Next show that

2 B ∪ (C ∩ A) ⊆ (A ∪ C ) ∩ B

Imdad ullah Khan (LUMS) Set Theory 15 / 18



Set Equality using Subset Relations

We need to prove that

1 (A ∪ C ) ∩ B ⊆ B ∪ (C ∩ A) 2 B ∪ (C ∩ A) ⊆ (A ∪ C ) ∩ B

ICP-4-26 Prove 1 : if x ∈ (A ∪ C ) ∩ B, then x ∈ B ∪ (C ∩ A)

x ∈ (A ∪ C ) ∩ B
x /∈ (A ∪ C ) ∩ B



x /∈ B

x ∈ B

x ∈ B ∪ (C ∩ A)

x /∈ (A ∪ C )

x /∈ A ∧ x /∈ C

x ∈ A ∩ C

x ∈ B ∪ (C ∩ A)
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x /∈ (A ∪ C ) ∩ B

x ∈ (A ∪ C ) ∩ B
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Set Equality using Subset Relations

We need to prove that

1 (A ∪ C ) ∩ B ⊆ B ∪ (C ∩ A) 2 B ∪ (C ∩ A) ⊆ (A ∪ C ) ∩ B

ICP-4-27 Prove 2 : if x ∈ B ∪ (C ∩ A), then x ∈ (A ∪ C ) ∩ B

x ∈ B ∪ (C ∩ A)



x ∈ B

x /∈ B

x /∈ (A ∪ C ) ∩ B

x ∈ (A ∪ C ) ∩ B

x ∈ C ∩ A

x /∈ C ∧ x /∈ A

x /∈ C ∪ A

x /∈ (A ∪ C ) ∩ B

x ∈ (A ∪ C ) ∩ B
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Set Equality

Equality of two sets can be proved using

Algebraic Rules (Set Identities)

Set Membership Tables

Logical Equivalence of membership predicates

By proving bidirectional subset relationships
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