Discrete Mathematics

Set Theory

- Sets: Definition, Universal Set, Complement, Cardinality
- Subset and Power Set
- Sets Operations
- Set Equality

■ Characteristic Vectors: Sets as Bit-Vectors
■ Multisets

Imdad ullah Khan

Set Operations

- Set operations (typically) take two sets and return another set
- Set complement is a unary operation (takes one set)
- Universal set is also involved in the background

■ Set Algebra is built upon these set operations

Set Operations: Union

The union of two sets A and B is the set containing all elements that are in A or B or both

$$
A \cup B=\{x \mid x \in A \vee x \in B\}
$$

$\{1,3,5\} \cup\{1,5,6,7\}=\{1,3,5,6,7\}$

Two sets A and B

$A \cup B$

Set Operations: Intersection

The intersection of two sets A and B is the set containing all elements that are both in A and B

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

$$
\{1,3,5\} \cap\{1,5,6,7\}=\{1,5\}
$$

Two sets A and B

Disjoint Sets

Two sets A and B are disjoint if $\quad A \cap B=\emptyset$

No elements in common. Logical expression!
$\{1,3,5\} \cap\{2,4,6\}=\emptyset$

Disjoint sets A and B

Set Operations: Set Difference

The difference of two sets A and B is the set containing those elements that are in A but not in B

$$
A \backslash B=\{x \mid x \in A \wedge x \notin B\}
$$

$$
\{1,3,5\} \backslash\{1,5,6,7\}=\{3\}
$$

Two sets A and B

Set Operations: Symmetric Difference

The symmetric difference of two sets A and B is the set containing those elements that are in exactly one of the two sets

$$
A \oplus B=\{x \mid x \in A \oplus x \in B\}
$$

$\{1,3,5\} \oplus\{1,5,6,7\}=\{3,6,7\}$

Two sets A and B

$A \oplus B$

Generalized Union

The union of a collection of sets is the set containing those elements that are members of at least one set in the collection

$$
A_{1} \cup A_{2} \cup \ldots \cup A_{n}=\bigcup_{i=1}^{n} A_{i}=\left\{x \mid \exists i x \in A_{i}\right\}
$$

n sets $A_{1}, A_{2}, \ldots, A_{n}$

$A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$

Generalized Union

The union of a collection of sets is the set containing those elements that are members of at least one set in the collection

$$
A_{1} \cup A_{2} \cup \ldots \cup A_{n}=\bigcup_{i=1}^{n} A_{i}=\left\{x \mid \exists i x \in A_{i}\right\}
$$

$■$ Let $A_{i}=\{i, i+1, i+2, \ldots\}$

- $A_{1}=\{1,2,3, \ldots\}$
- $A_{2}=\{2,3,4, \ldots\}$
- ICP 4-17 $A_{3}=$?
- ICP 4-18 $A_{4}=$?

$$
\text { ICP 4-19 } \bigcup_{i=1}^{n} A_{i}=\{1,2,3, \ldots\}
$$

Generalized Intersection

The intersection of a collection of sets is the set containing those elements that are members of all the sets in the collection

$$
A_{1} \cap A_{2} \cap \ldots \cap A_{n}=\bigcap_{i=1}^{n} A_{i}=\left\{x \mid \forall i x \in A_{i}\right\}
$$

n sets $A_{1}, A_{2}, \ldots, A_{n}$

$A_{1} \cap A_{2} \cap A_{3} \cap A_{4}$

Generalized Intersection

The intersection of a collection of sets is the set containing those elements that are members of all the sets in the collection

$$
A_{1} \cap A_{2} \cap \ldots \cap A_{n}=\bigcap_{i=1}^{n} A_{i}=\left\{x \mid \forall i x \in A_{i}\right\}
$$

$■$ Let $A_{i}=\{i, i+1, i+2, \ldots\}$

- $A_{1}=\{1,2,3, \ldots\}$
- $A_{2}=\{2,3,4, \ldots\}$
- ICP 4-20 $A_{5}=$?
- ICP 4-21 $A_{6}=$?

ICP 4-22 $\bigcap_{i=1}^{n} A_{i}=\{n, n+1, n+2, \ldots\}$

Set Operations

■ Set Operation (Binary)

- Union
- Intersection
- Difference
- Symmetric Difference
- Generalized Union

■ Generalized Intersection

