Set Theory

- Sets: Definition, Universal Set, Complement, Cardinality
- Subset and Power Set
- Sets Operations
- Set Equality
- Characteristic Vectors: Sets as Bit-Vectors
- Multisets

Imdad ullah Khan

Sets Summary

- A set is an ordered collection of objects
- Order and repetition of objects do not matter
- Sets can be described in various ways
- Empty set is a well-defined set with zero objects
- Two sets are equal if and only if they have the same elements
- \overline{A} is the collection of all objects in universal set that are not in A
- Cardinality of A is the number of distinct elements in A

A is a subset of B if and only if every element of A is an element of B

Denoted by $A \subseteq B$

$$A \subseteq B$$
 means $\forall x \ (x \in A \rightarrow x \in B)$

When $A \subseteq B$, B is superset of A

Which of the following is True/False?

Which of the following is True/False?

Which of the following is True/False?

Which one of the following is True/False?

Empty set is subset of every set

A is a subset of B if and only if every element of A is an element of B

$$A \subseteq B$$
 means $orall x \ (x \in A o x \in B)$

 $\forall A \quad \emptyset \subseteq A$

Need to show that the following is true

$$\forall x \ (x \in \emptyset \to x \in A)$$

 $x \in \emptyset$ is always false (for every x)

thus

$$ig(x \in \emptyset o x \in Aig)$$
 is always true

A is a subset of B if and only if every element of A is an element of B

$$A \subseteq B$$
 means $\forall x \ (x \in A \rightarrow x \in B)$

 $\forall A \quad A \subseteq A$

Need to show that the following is true

$$\forall x \ (x \in A \to x \in A)$$

 $ig(x\in A o x\in Aig)$ is always true (for every xig)

A set A is called a proper subset of B if $A \subseteq B$ but $A \neq B$

Denoted by $A \subset B$ or $A \subsetneq B$

 $A \subset B$ means $\forall x \ (x \in A \rightarrow x \in B) \land \exists x \ (x \in B \land x \notin A)$

Two sets A and B are equal if $A \subseteq B$ and $B \subseteq A$

■ A = B means $\forall x \ (x \in A \leftrightarrow x \in B)$ ▷ earlier definition ■ A = B means $A \subseteq B$ AND $B \subseteq A$ A = B means $\underbrace{\forall x \ (x \in A \to x \in B)}_{A \subseteq B}$ AND $\underbrace{\forall x \ (x \in B \to x \in A)}_{B \subseteq A}$

• Combining the two we get our old definition of A = B

The power set of a set A is the set of all subsets of A

Denoted by $\mathcal{P}(A)$

 $A = \big\{ p, q, r \big\}$

$$\mathcal{P}(A) = \left\{ \emptyset, \{p\}, \{q\}, \{r\}, \{p, q\}, \{p, r\}, \{q, r\}, \{p, q, r\} \right\}$$

• $\emptyset \notin A$ but $\emptyset \subseteq A$, thus $\emptyset \in \mathcal{P}(A)$

•
$$A \notin A$$
 but $A \subseteq A$, thus $A \in \mathcal{P}(A)$

Power set of the empty set, $\mathcal{P}(\emptyset)$

$$\mathcal{P}(\emptyset) = \{\emptyset\} = \{\{\}\}$$

Power set of the set containing \emptyset , $\mathcal{P}(\{\emptyset\})$

$$\mathcal{P}\Big(\{\emptyset\}\Big) \;=\; \Big\{\emptyset, \{\emptyset\}\Big\}$$

Cardinality of Power set

If
$$|A| = n$$
, then $|\mathcal{P}(A)| = 2^n$

•
$$A = \{p, q, r\}$$

• $\mathcal{P}(A) = \{\emptyset, \{p\}, \{q\}, \{r\}, \{p, q\}, \{p, r\}, \{q, r\}, \{p, q, r\}\}$
• $|\mathcal{P}(A)| = 2^3 = 8$

ICP 4-14 Let
$$B = \{p\}$$
. What is $|\mathcal{P}(B)|$?

ICP 4-15 Let
$$C = \{\} = \emptyset$$
. What is $|\mathcal{P}(C)|$?

ICP 4-16 Let
$$D = \{\{\}\} = \{\emptyset\}$$
. What is $|\mathcal{P}(D)|$?

Subsets: Summary

- A is a subset of B if and only if every element of A is an element of B
- $A \subseteq B$, A is subset of B, B is superset of A
- Empty set is a subset of every set
- Every set is a subset of itself
- Power Set of A is the set of all subsets of A
- Cardinality of power set of A with |A| = n is 2^n