Discrete Mathematics

Set Theory

■ Sets: Definition, Universal Set, Complement, Cardinality

- Subset and Power Set
- Sets Operations
- Set Equality
- Characteristic Vectors: Sets as Bit-Vectors

■ Multisets

Imdad ullah Khan

Sets Summary

- A set is an ordered collection of objects

■ Order and repetition of objects do not matter

- Sets can be described in various ways

■ Empty set is a well-defined set with zero objects

- Two sets are equal if and only if they have the same elements

■ \bar{A} is the collection of all objects in universal set that are not in A
■ Cardinality of A is the number of distinct elements in A

Subset

A is a subset of B if and only if every element of A is an element of B

Denoted by $A \subseteq B$

$$
A \subseteq B \quad \text { means } \quad \forall x(x \in A \rightarrow x \in B)
$$

When $A \subseteq B, \quad B$ is superset of A

- $\mathbb{N}=\{0,1,2,3 \ldots\}$
$■ \mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
■ $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$
■ $\mathbb{Q}=\{p / q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\}$
\triangleright Natural numbers
\triangleright Integers
\triangleright Positive integers
\triangleright Rational numbers

Which of the following is True/False?

ICP 4-6 $\mathbb{N} \subseteq \mathbb{Z}$
a) True
b] False

$$
\text { ICP 4-7 } \mathbb{Z} \subseteq \mathbb{Z}^{+}
$$

a) True
b] False

- $\mathbb{N}=\{0,1,2,3 \ldots\}$
$■ \mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
■ $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$
■ $\mathbb{Q}=\{p / q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\}$
\triangleright Natural numbers
\triangleright Integers
\triangleright Positive integers
\triangleright Rational numbers

Which of the following is True/False?

ICP 4-8 $\mathbb{Z}^{+} \subseteq \mathbb{N}$
a) True
b] False

ICP 4-9 $\mathbb{Q} \subseteq \mathbb{N}$

a) True
b] False

Subset

- $\mathbb{N}=\{0,1,2,3 \ldots\}$

■ $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
■ $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$
■ $\mathbb{Q}=\{p / q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\}$
\triangleright Natural numbers
\triangleright Integers
\triangleright Positive integers
\triangleright Rational numbers

Which of the following is True/False?

ICP 4-10 $\mathbb{Z} \subseteq \mathbb{Q}$
a) True
b] False

$$
\text { ICP 4-11 } \mathbb{Z}^{+} \subseteq \mathbb{Q}
$$

a) True
b) False

Subset

- $\mathbb{N}=\{0,1,2,3 \ldots\}$

■ $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
\triangleright Natural numbers
\triangleright Integers
■ $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$
\triangleright Positive integers
■ $\mathbb{Q}=\{p / q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\}$
\triangleright Rational numbers

Which one of the following is True/False?

ICP 4-12 $\mathbb{Z} \subseteq \mathbb{N}$
a) True
b] False

ICP 4-13 $\mathbb{Z}^{+} \subseteq \mathbb{Z}$
a) True
b] False

Empty set is subset of every set

A is a subset of B if and only if every element of A is an element of B

$$
A \subseteq B \text { means } \forall x(x \in A \rightarrow x \in B)
$$

$$
\forall A \quad \emptyset \subseteq A
$$

Need to show that the following is true

$$
\forall x(x \in \emptyset \rightarrow x \in A)
$$

$$
x \in \emptyset \text { is always false (for every } x \text {) }
$$

thus

$$
(x \in \emptyset \rightarrow x \in A) \text { is always true }
$$

Every set is subset of itself

A is a subset of B if and only if every element of A is an element of B

$$
A \subseteq B \quad \text { means } \quad \forall x(x \in A \rightarrow x \in B)
$$

$$
\forall A \quad A \subseteq A
$$

Need to show that the following is true

$$
\begin{gathered}
\forall x(x \in A \rightarrow x \in A) \\
(x \in A \rightarrow x \in A) \text { is always true }(\text { for every } x)
\end{gathered}
$$

Proper Subset

A set A is called a proper subset of B if $A \subseteq B$ but $A \neq B$

Denoted by $A \subset B$ or $A \subsetneq B$

$$
A \subset B \text { means } \forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A)
$$

Set Equality $A=B$

Two sets A and B are equal if $A \subseteq B$ and $B \subseteq A$

- $A=B$ means $\forall x(x \in A \leftrightarrow x \in B)$
\triangleright earlier definintion
- $A=B$ means $A \subseteq B$ and $B \subseteq A$

$$
A=B \text { means } \underbrace{\forall x(x \in A \rightarrow x \in B)}_{A \subseteq B} \text { AND } \underbrace{\forall x(x \in B \rightarrow x \in A)}_{B \subseteq A}
$$

- Combining the two we get our old definition of $A=B$

Power set

The power set of a set A is the set of all subsets of A

Denoted by $\mathcal{P}(A)$
$A=\{p, q, r\}$

$$
\mathcal{P}(A)=\{\emptyset,\{p\},\{q\},\{r\},\{p, q\},\{p, r\},\{q, r\},\{p, q, r\}\}
$$

■ $\emptyset \notin A$ but $\emptyset \subseteq A$, thus $\emptyset \in \mathcal{P}(A)$

- $A \notin A$ but $A \subseteq A$, thus $A \in \mathcal{P}(A)$

Power set

Power set of the empty set, $\mathcal{P}(\emptyset)$

$$
\mathcal{P}(\emptyset)=\{\emptyset\}=\{\{ \}\}
$$

Power set of the set containing $\emptyset, \mathcal{P}(\{\emptyset\})$

$$
\mathcal{P}(\{\phi\})=\{\emptyset,\{\emptyset\}\}
$$

Cardinality of Power set

$$
\text { If }|A|=n \text {, then }|\mathcal{P}(A)|=2^{n}
$$

- $A=\{p, q, r\}$
- $\mathcal{P}(A)=\{\emptyset,\{p\},\{q\},\{r\},\{p, q\},\{p, r\},\{q, r\},\{p, q, r\}\}$
- $|\mathcal{P}(A)|=2^{3}=8$

ICP 4-14 Let $B=\{p\}$. What is $|\mathcal{P}(B)|$?
ICP 4-15 Let $C=\{ \}=\emptyset$. What is $|\mathcal{P}(C)|$?
ICP 4-16 Let $D=\{\{ \}\}=\{\emptyset\}$. What is $|\mathcal{P}(D)|$?

Subsets: Summary

- A is a subset of B if and only if every element of A is an element of B
- $A \subseteq B, A$ is subset of B, B is superset of A

■ Empty set is a subset of every set

- Every set is a subset of itself
- Power Set of A is the set of all subsets of A
- Cardinality of power set of A with $|A|=n$ is 2^{n}

