Set Theory

- Sets: Definition, Universal Set, Complement, Cardinality
- Subset and Power Set
- Sets Operations
- Set Equality
- Characteristic Vectors: Sets as Bit-Vectors
- Multisets

Imdad ullah Khan

Set

A set is an unordered collection of objects

- $A : \{1, 2, a, b, Fred, LUMS\}$
- $\bullet \ \mathbb{N} \ : \ \left\{0,1,2,3\dots\right\}$
- B : the set of all professors in LUMS
- $B : \{x | x \text{ is a professor in LUMS} \}$

Order of elements is not significant

 \blacksquare $\{1,2,3\}$ is the same as $\{2,3,1\}$

Repetition does not count

• $\{1, 2, 2, 2, 3\}$ is the same as $\{1, 2, 3\}$

Different from arrays in C++/Java (order, same type)

Notation:

- Names of sets usually denoted by upper case letters
- Objects in a set are called it's elements/members
- $x \in A$: x is an element of A
- $A \ni x$: A contains x

Sets: Description

Sets can be described by listing it's elements

- TAs := {20102222, 20103333, 20104444, 20105555}
- $\bullet \ \mathbb{N} := \big\{0, 1, 2, 3\dots\big\}$
- Sets can be described by an English phrase
 - Set of students in CS-210
 - Set of all professors in LUMS
- Sets can be described by providing a membership predicate
 - Objects for which the predicate is true will be members of the set

•
$$B := \{x \mid x \text{ is a professor in LUMS}\}$$

• $C := \{x \in \mathbb{N} \mid x > 10\}$

Sets: Description

- Sets could have many different equivalent descriptions
- Follows from logical equivalence of membership predicates

ICP 4-1 List 5 elements of each of the following sets

1
$$A = \{x \mid x \text{ is even and a perfect square}\}$$

2
$$B = \{x \mid x+1 \text{ is a multiple of 4}\}$$

3
$$C = \{x \text{ rational number } | x^2 < 2\}$$

$$4 X = \{x^2 \mid x \text{ is even}\}$$

$$5 Y = \{4x - 1 \mid x \in \mathbb{Z}\}$$

6 $Z = \{\sqrt{x} \mid x < 2\}$

Standard Numerical Sets

$\bullet \mathbb{N} := \{0, 1, 2, 3 \dots \}$	▷ Natural numbers
$\blacksquare \ \mathbb{Z} \ := \ \big\{ \ldots, -2, -1, 0, 1, 2, \ldots \big\}$	▷ Integers
$\blacksquare \mathbb{Z}^+ := \big\{ \dots, 1, 2, 3, \dots \big\}$	▷ Positive integers
$\blacksquare \ \mathbb{Q} \ := \ \big\{ {}^{p}\!/ q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \big\}$	Rational numbers
• \mathbb{R} := the set of Real numbers	
• int := set of integers that can be expressed in 32 bits	

double := the set of real numbers that can be expressed in 64 bits

Empty Set

$$\bullet A = \emptyset = \{ \}$$

Family/Collection of sets: Set of sets

•
$$A = \left\{ \{x, y\}, \{y, z\}, \{z\} \right\}$$

Set containing sets

•
$$A = \left\{ \{p, q\}, x, \{x\}, \{y\} \right\}$$

Set Equality

Two sets are equal if and only if they have the same elements

$$A = B$$
 means $\forall x \ (x \in A \leftrightarrow x \in B)$

ICP 4-2
$$A = \{3, 1, -3, 9\}$$
 $B = \{-3, 1, 3, 9\}$

Is A = B? why?

Set Equality

Two sets are equal if and only if they have the same elements

A = B means $\forall x \ (x \in A \leftrightarrow x \in B)$

ICP 4-3
$$A = \{p, q, r, s\}$$
 $B = \{r, q, s\}$

Is A = B? why?

Set Equality

Two sets are equal if and only if they have the same elements

A = B means $\forall x \ (x \in A \leftrightarrow x \in B)$

ICP 4-3
$$A = \{p, q, r\}$$
 $B = \{p, r, q, p\}$

Is A = B? why?

Set Complement

The complement of a set A contains those elements that are not in A

- $\mathbb{Q} = \left\{ \mathbb{P}/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \right\}$ (rationals)
- Irrational numbers: non-rational number
- $\{\sqrt{2}, \pi, e, \text{ cat, dog, calculus}...\}$
- Universal Set ▷ recall Universe of Discourse

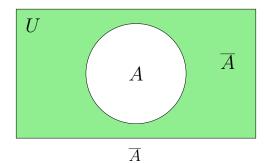
The complement of a set A contains those elements (of the universal set) that are not in A

Set Complement

The complement of a set A consists of all elements of U that are not in A

Denoted by \overline{A}

 $\overline{A} := \{x \in U \mid x \notin A\}$



Puzzle

In a town, there is a male barber who shaves all the men and only those men who do not shave themselves

Does the barber shave himself?

- Let *M* = {men who shave themselves}
- *M* is the set of people that the barber *b* does not shave
- If the barber b shaves himself, then $b \in M$
- Then barber must not shave himself, i.e. $b \notin M$
- But barber shaves all those not in M, so $b \in M$
- $b \in M$ is neither true nor false

Russell's Paradox

Let S be the set that contains all sets, which do not contain themselves

Can this set exist?

- Let say S exists. Then either $S \in S$ or $S \notin S$
- If S ∈ S, since all elements of S do not contain themselves, thus S does not contain S, i.e. S ∉ S
- If $S \notin S$, since S contains all those sets that do not contain themselves, so S should contain S, i.e. $S \in S$
- In both cases the assumption is contradicted

For a finite set A it's cardinality is the number of distinct elements in A

Denoted by |A|

 $A = \{$ Even integers among the first 100 positive integers $\}$

```
ICP 4-4 |A| = ?
```

```
B = \{ \text{Positive factors of } 16 \}
```

ICP 4-5 |B| = ?

Sets Summary

- A set is an ordered collection of objects
- Order and repetition of objects do not matter
- Sets can be described in various ways
- Empty set is a well-defined set with zero objects
- Two sets are equal if and only if they have the same elements
- \overline{A} is the collection of all objects in universal set that are not in A
- Cardinality of A is the number of distinct elements in A