Discrete Mathematics

Predicate Logic

- Predicates and Propositional Functions
- Universal and Existential Quantifiers
- Negating Quantified Statements

■ Nested Quantified Expressions

Imdad ullah Khan

Quantified Expression: Recap

■ Propositional function becomes proposition when specific value is given to variable

- Quantifiers make it proposition for a range of values

■ Universal Quantifier: \forall
$\forall x P(x):=P(x)$ (is true) for all values of x in the UoD

Proposition $\forall x P(x)$ is True iff for every x in UoD, $P(x)$ is True

- Existential Quantifier: \exists
$\exists x P(x):=P(x)$ (is true) for some value(s) of x in the UoD

Proposition $\exists x P(x)$ is True iff for at least one x in UoD, $P(x)$ is True

Nested Quantified Expressions

Predicates can have more than one variables

■ $P(x, y): x$ teaches course y in LUMS

- $Q(x, y, z): x$ is an instructor of course y in university z

■ $S(x, y, z): x+y=z$
$P($ Pythogarus, CS210 $)=$?
$P($ Pythogarus,$y)=?$
$P(x, C S 210)=?$

Each variable needs to be given value or quantified to make the predicate a proposition

Nested Quantified Expressions: Binding Variables

Predicates can have more than one variables
Each variable needs to be given value or quantified to make the predicate a proposition

- $\forall x P(x, y)$ is not a proposition
\triangleright The variable x is 'bound', while y is 'free'
■ $\forall x \forall y P(x, y)$ is a proposition
\triangleright both variables are bound
- $\forall x \exists y \forall z Q(x, y, z)$ is a proposition
\triangleright all variables are bound

Nested Quantified Expressions: Binding Variables

$$
\forall x, \forall y P(x, y) \equiv ? \quad \forall x P(x, y) \wedge \forall y P(x, y)
$$

LHS: Both x and y are bound
RHS: x is bound in the first predicate and y is free
RHS: y is bound in the second predicate and x is free
RHS is not even a proposition

Nested Quantified Expressions: Examples

Translate these statements to logical expressions with quantifiers
The sum of two positive integers is always positive

$$
\forall x \forall y((x>0) \wedge(y>0)) \rightarrow(x+y>0)
$$

Every real number except zero has a multiplicative inverse

$$
\forall x \exists y(x \neq 0) \rightarrow(x y=1)
$$

If a person is female and is a parent, then this person is someone's mother

$$
\forall x \exists y(F(x) \wedge P(x)) \rightarrow M(x, y)
$$

Everyone has exactly one best friend

$$
\forall x \exists y \forall z(B(x, y) \wedge(y \neq z)) \rightarrow \neg B(x, z)
$$

Nested Quantified Expressions: Examples

Translate the following logical expressions into English statements
$\forall x \exists y F(x, y) \wedge x \neq y$
Everyone has at least one friend
$\exists y \forall x F(x, y) \wedge x \neq y$
There is at least one person who is friend of everyone

Are these statements logically equivalent?

Nested Quantified Expressions: Examples

Translate the logical expressions into English statements
$\forall x \exists y(x \neq 0) \rightarrow(x y=1)$
Every real number except zero has a multiplicative inverse
$\exists y \forall x(x \neq 0) \rightarrow(x y=1)$
Some real number is multiplicative inverse of every non-zero real number

Are these statements logically equivalent?

Nested Quantified Expressions: Order is important

Order of quantifiers is extremely important
$\forall x \exists y P(x, y) \quad$ is not the same as $\quad \exists y \forall x P(x, y)$
$P(x, y): x$ teaches course y in LUMS

■ $\forall x \exists y P(x, y)$: For every instructor, there is a course that (s)he teaches

- $\exists y \forall x P(x, y)$: There is a course that every instructor teaches

■ $\exists x \forall y P(x, y)$: There is an instructor who teaches all the courses

- $\forall y \exists x P(x, y)$: For every course, there is an instructor who teaches it

Nested Quantified Expressions: Order is important

Order of quantifier is extremely important
$\forall x \exists y P(x, y) \quad$ is not the same as $\quad \exists y \forall x P(x, y)$
$Q(x, y, z): x$ is an instructor of course y in university z

- $\forall z \forall y \exists x Q(x, y, z)$: In every uni. for every course there is an instructor

■ $\forall z \exists x \forall y Q(x, y, z)$: In every uni. there is an instructor for all courses
■ $\exists x \forall z \forall y Q(x, y, z)$: There is an instructor for every course in every uni.

Nested Quantified Expressions: Order is important

1				
		1	1	
1				
				1
				1

Table: 1

- \forall row $x \exists$ column y $A[x][y]=1$
- Every row has at least one 1
- Both tables satisfy this

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Table: $\mathbf{2}$

- \exists column $y \forall$ row $x A[x][y]=1$
- There is a column with all 1's
- Table $\mathbf{1}$ does not satisfy this
- Table 2 satisfy this

Nested Quantified Expressions: Order is important

1				
		1	1	
1				
				1
				1

Table: 1

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

Table: $\mathbf{2}$

- \forall row $x \forall$ column y $A[x][y]=1$

■ Every cell has a 1

- Table $\mathbf{1}$ does not satisfy this
- Table 2 satisfy this

■ \forall column $y \forall$ row $x A[x][y]=1$

- Every cell has a 1
- Table $\mathbf{1}$ does not satisfy this
- Table 2 satisfy this

Nested Quantified Expressions: Order of Quantifiers

1				
		1	1	
1				
				1
				1

Table: $\mathbf{3}$

- \exists row $x \exists$ column $y A[x][y]=1$
- There is a 1 in the table
- Both tables satisfy this

Table: 4

- \exists column $x \exists$ row $y A[x][y]=1$
- There is a 1 in the table

■ Both tables satisfy this

Nested Quantified Expressions

Order of quantifier is extremely important $\forall x \exists y P(x, y) \quad$ is not the same as $\quad \exists y \forall x P(x, y)$

If both quantifiers are the same then order does not matter

$$
\forall x \forall y P(x, y) \equiv \forall y \forall x P(x, y) \quad \text { and } \quad \exists x \exists y P(x, y) \equiv \exists y \exists x P(x, y)
$$

Nested Quantified Expressions: Examples

Goldbach conjecture (1742)

Every even integer greater than 2 can be written as sum of two primes

$$
\forall n \in \mathbb{N},((n>2) \wedge(n \text { even })) \rightarrow(\exists p, q \in \mathbb{P}, n=p+q)
$$

Vinogradov (1937)

Every sufficiently large odd number is the sum of three primes

$$
\exists K \in \mathbb{N}, \forall n \geq K,((n \text { odd }) \rightarrow \exists p, q, r \in \mathbb{P}, n=p+q+r)
$$

Truth Values of Nested Quantified Expressions

Statement	When True?	When False?
$\forall x \forall y P(x, y)$	$P(x, y)$ is true for	There is a pair x, y for which $P(x, y)$ is false
$\forall y \forall x P(x, y)$	every pair x, y	There is an x such that $\forall x \exists y P(x, y)$
For every x, there is a y for which $P(x, y)$ is true	$P(x, y)$ is false for every y	

Nested Quantified Expressions

Express each of these system specifications using predicates with UoD's, quantifiers, and logical connectives

ICP 2-27 At least one console must be accessible during every fault condition
$A(x, y)$: Console x is accessible during fault condition y
$\forall y \exists x A(x, y)$

Nested Quantified Expressions

Express each of these system specifications using predicates with UoD's, quantifiers, and logical connectives

ICP 2-28 The e-mail address of every user can be retrieved whenever the archive contains at least one message sent by every user on the system
$R(y)$: Email of user y can be retrieved
$M(x, y)$: Message x has been sent by user y
$\forall y \forall z \exists x M(x, z) \rightarrow R(y)$

Nested Quantified Expressions

Express each of these system specifications using predicates with UoD's, quantifiers, and logical connectives

ICP 2-29 For every security breach there is at least one mechanism that can detect that breach if and only if there is a process that has not been compromised
$D(x, y)$: Mechanism x can detect breach y
$C(z)$: Process z has been compromised
$\forall y \exists x \exists z D(x, y) \Longleftrightarrow \neg C(z)$

Nested Quantified Expressions

Express each of these system specifications using predicates with UoD's, quantifiers, and logical connectives

ICP 2-30 There are at least two paths connecting every two distinct endpoints on the network
$C(p, x, y)$: Path p connects endpoint x and y
$\forall x \forall y \neq x \exists p_{1} \exists p_{2} \neq p_{1} C\left(p_{1}, x, y\right) \wedge C\left(p_{2}, x, y\right)$

Nested Quantified Expressions

Translate these statements expressing some mathematical fact into English
Let the Universe of discourse for all variables be real numbers

ICP 2-32 $\forall x \exists y(x+y=0)$
Every real number has an additive inverse
ICP 2-33 $\exists x \forall y(x+y=y)$
There exists an additive identity
ICP 2-34 $\forall x \exists y((x \neq 0) \rightarrow(x y=1))$
Every non-zero real number has a multiplicative inverse
ICP 2-35 $\exists x \forall y(x y=y)$
There exists a multiplicative identity

Negating Nested Quantified Expressions

Recall

$$
\neg \forall x P(x) \equiv \exists x \neg P(x)
$$

$$
\neg \exists x P(x) \equiv \forall x \neg P(x)
$$

Negate nested quantified statements using iterative applications of negating (singly) quantified statements

$$
\begin{aligned}
& \neg \forall x \exists y P(x, y) \equiv \exists x \neg \exists y P(x, y) \equiv \exists x \forall y \neg P(x, y) \\
& \neg \exists x \forall y P(x, y) \equiv \forall x \neg \forall y P(x, y) \equiv \forall x \exists y \neg P(x, y)
\end{aligned}
$$

$$
\neg \forall x \forall y P(x, y) \equiv \exists x \neg \forall y P(x, y) \equiv \exists x \exists y \neg P(x, y)
$$

$$
\neg \exists x \exists y P(x, y) \equiv \forall x \neg \exists y P(x, y) \equiv \forall x \forall y \neg P(x, y)
$$

Negating Nested Quantified Expressions

$$
P(x, y): x \text { teaches course } y \text { in LUMS }
$$

Negate the following statement in plain English

For every course, there is an instructor teaching it

Next translate it into a quantified expression

Negate the quantified expression

Translate the negated quantified expression into plain English and compare with the one you got earlier

Nested Quantified Expressions: Summary

- All variables in multivariable predicates need to be bound
- Each variable can be quantified differently
- Order of different quantifiers is extremely important
- For same quantifiers order does not matter

■ It is tricky to translate English statements to nested quantified statement and vice-versa

- Requires extensive practice

■ Negating nested quantified statement is just nested applications negating quantified statements

