Propositional Logic

- Proposition and truth value
- Compound proposition and truth table
- Implication and it's derivatives

Imdad ullah Khan

A statement is a description of something

A proposition is a statement that is either **true** or **false**

- Recall that for us there is no semantic meaning of a proposition
- For us they are just variables taking the value true or false
- Sometimes called Boolean variables
- We denote them by P, Q, S, etc.

A statement is a description of something

A proposition is a statement that is either **true** or **false**

Clearly, very little can be expressed by propositions only

- Just as in English we can modify, combine and relate statements with words such as "not", "and", "or", "if-then" etc.
- We discuss how to combine propositions
- Except that we will give these connectives precise meanings

Problems with English connectives:

• You may register for CS-210 or CS-212.

How about both?

• Every student gets a grade.

Does everyone get the same grade? Does everyone get a unique grade?

Compound Propositions: Negation

Let P be a proposition, the truth value of the proposition $\neg P$ is as defined in the following truth table

- ("NOT P"), $!P(C + +, Java), \bar{P}$
- When P is true $\neg P$ is false and vice-versa

Compound Propositions: Negation

- P : "Today is Friday"
- ¬*P* :
 - "Today is not Friday"
 - "It is not the case that today is Friday"
 - "It is not Friday today"

- Q: 2+2=4
- $\square \neg Q$:
 - 2 + 2 ≠ 4

Let P and Q be propositions, the truth value of the proposition $P \wedge Q$ is defined as follows:

■ *P* AND *Q*, *P*&&*Q* (*C* + +, Java)

• $P \land Q$ is true when both P and Q are true

Compound Propositions: AND

- *P* : "Today is Friday" *Q* : " It is warm today"
- $P \wedge Q$:
 - "Today is Friday and it is warm"

- $P: 2+2 = 4 \qquad Q: 5 > 1$
- $P \wedge Q$:
 - $(2+2=4) \land (5>1)$

Let P and Q be propositions, the truth value of the proposition $P \lor Q$ is defined as follows:

• P OR Q, P||Q (C ++, Java)

• $P \lor Q$ true when one or both of P and Q are true

Compound Propositions: OR

- *P*: "You may register for CS-210"
 Q: "You may register for CS-212"
- $P \lor Q$:
 - "You may register for CS-210 or CS-212"
- P: 2+2=4 Q: 5>1
- $P \lor Q$:
 - $(2+2=4) \lor (5>1)$

Let P and Q be propositions, the truth value of the proposition $P \oplus Q$ is defined as follows:

- P XOR Q, Exclusive OR
- $P \oplus Q$ true when exactly one of P and Q is true

Compound Propositions: XOR

- *P*: "You may register for CS-210"
 Q: "You may register for CS-212"
- $P \oplus Q$:
 - "You may register for CS-210 or CS-212 but not both"
- $P: 2 + 2 = 4 \qquad Q: 5 > 1$
- $\blacksquare P \oplus Q$:
 - $(2+2=4) \oplus (5>1)$

Let P and Q be propositions, the truth value of the proposition $P \rightarrow Q$ is defined as follows:

• P implies Q, Conditional Statement if P then Q

• $P \rightarrow Q$ is false when P is true and Q is false

Compound Propositions: if-then

- P: "You solve the Goldbach conjecture"
 Q: "You get A in course"
- $P \rightarrow Q$:
 - "If you solve the Goldbach conjecture, then you will get an A in course"
- P : "x is divisible by 4" Q : "x is even"

• $P \rightarrow Q$:

• if x is divisible by 4, then x is even

Let *P* and *Q* be propositions, the truth value of the proposition $P \leftrightarrow Q$ is defined as follows:

- P iff Q, biconditional Statement
- $P \leftrightarrow Q$ is true when P = Q

Compound Propositions: iff

- P: "You solve the Goldbach conjecture"
 Q: "You get an A in course"
- $P \leftrightarrow Q$:
 - "You will get an A in this course iff you solve the Goldbach conjecture"
- P : "x is divisible by 2" Q : "x is even"

• $P \leftrightarrow Q$:

• x is divisible by 2 iff x is even

Given a compound proposition, make it's truth table

It gives possible values based on truth values of atomic propositions

Make column for each atomic proposition and compound them to get given proposition

 $\neg Q \lor (\neg P \land Q)$

Ρ	Q	$\neg P$	$\neg Q$	$\neg P \land Q$	$\neg Q \lor (\neg P \land Q)$
Т	Т	F	F	F	F
T	F	F	Т	F	Т
F	Т	Т	F	Т	Т
F	F	Т	Т	F	Т

Given a truth table, find a compound proposition for it

The true rows method: Our formula should be true, when the input is **exactly one of** the true rows

Formula is true when P and $\neg Q$ are true OR when $\neg P$ and Q are true

$$(P \land \neg Q) \lor (\neg P \land Q)$$

Given a truth table, find a compound proposition for it

The true rows method: Our formula should be true, when the input is **not** any of the false rows

■ Formula is true when NOT (P and Q are true) AND when NOT ¬P and ¬Q are true

$$\neg (P \land Q) \land \neg (\neg P \land \neg Q)$$

Find a logical formula for the following Truth table

- This is the truth table of $P\oplus Q$
- The above method will express it in terms of $\land,\lor,$ or \neg

Find a logical formula for the truth table of $(P \rightarrow Q)$

Find a logical formula for the truth table of $\neg(P \rightarrow Q)$

Compound Proposition: Summary

- Negation a proposition
- Proposition made by combining two propositions with AND, OR, XOR, IF-THEN, IFF
- Can make compound propositions from others
- Compound proposition \rightarrow Truth Table
- $\blacksquare \ Truth \ Table \rightarrow Compound \ Proposition$