Discrete Mathematics

Propositional Logic

- Proposition and truth value
- Compound proposition and truth table
- Implication and it's derivatives

Imdad ullah Khan

Combining Propositions

A statement is a description of something

A proposition is a statement that is either true or false

- Recall that for us there is no semantic meaning of a proposition

■ For us they are just variables taking the value true or false

- Sometimes called Boolean variables

■ We denote them by P, Q, S, etc.

Combining Propositions

A statement is a description of something

A proposition is a statement that is either true or false

- Clearly, very little can be expressed by propositions only

■ Just as in English we can modify, combine and relate statements with words such as "not", "and", "or", "if-then" etc.

- We discuss how to combine propositions
- Except that we will give these connectives precise meanings

Combining Propositions

Problems with English connectives:

■ You may register for CS-210 or CS-212.
How about both?

■ Every student gets a grade.
Does everyone get the same grade?
Does everyone get a unique grade?

Compound Propositions: Negation

Let P be a proposition, the truth value of the proposition $\neg P$ is as defined in the following truth table

P	$\neg P$
T	F
F	T

- ("NOT P"), ! $P(C++$, Java $), \bar{P}$
- When P is true $\neg P$ is false and vice-versa
Programmer joke:
false
it's funny
because it's true

Compound Propositions: Negation

■ P : " Today is Friday"
■ $\neg P$:

- "Today is not Friday"
- "It is not the case that today is Friday"
- "It is not Friday today"
- $Q: 2+2=4$

■ $\neg Q$:

- $2+2 \neq 4$

Compound Propositions: AND

Let P and Q be propositions, the truth value of the proposition $P \wedge Q$ is defined as follows:

P	Q	$P \wedge Q$
T	T	T
T	F	F
F	T	F
F	F	F

- P AND $Q, P \& \& Q(C++$, Java $)$

■ $P \wedge Q$ is true when both P and Q are true

Compound Propositions: AND

■ P: " Today is Friday" $\quad Q$: " It is warm today"

- $P \wedge Q$:
- "Today is Friday and it is warm"
- $P: 2+2=4 \quad Q: 5>1$

■ $P \wedge Q$:

- $(2+2=4) \wedge(5>1)$

Compound Propositions: OR

Let P and Q be propositions, the truth value of the proposition $P \vee Q$ is defined as follows:

P	Q	$P \vee Q$
T	T	T
T	F	T
F	T	T
F	F	F

■ P OR $Q, P \| Q(C++$, Java $)$
■ $P \vee Q$ true when one or both of P and Q are true

Compound Propositions: OR

- P : "You may register for CS-210"

Q : " You may register for CS-212"

- $P \vee Q$:
- "You may register for CS-210 or CS-212"
- $P: 2+2=4 \quad Q: 5>1$
- $P \vee Q$:
- $(2+2=4) \vee(5>1)$

Compound Propositions: XOR

Let P and Q be propositions, the truth value of the proposition $P \oplus Q$ is defined as follows:

P	Q	$P \oplus Q$
T	T	F
T	F	T
F	T	T
F	F	F

■ P XOR Q, Exclusive OR
■ $P \oplus Q$ true when exactly one of P and Q is true

Compound Propositions: XOR

■ P : " You may register for CS-210"
Q : " You may register for CS-212"

- $P \oplus Q$:
- "You may register for CS-210 or CS-212 but not both"
- $P: 2+2=4 \quad Q: 5>1$
- $P \oplus Q$:
- $(2+2=4) \oplus(5>1)$

Compound Propositions: if-then

Let P and Q be propositions, the truth value of the proposition $P \rightarrow Q$ is defined as follows:

P	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

■ P implies Q, Conditional Statement if P then Q
■ $P \rightarrow Q$ is false when P is true and Q is false

Compound Propositions: if-then

■ P : " You solve the Goldbach conjecture"
Q : "You get A in course"

- $P \rightarrow Q$:
- "If you solve the Goldbach conjecture, then you will get an A in course"

■ P : " x is divisible by 4 " $\quad Q$: " x is even"

- $P \rightarrow Q$:
- if x is divisible by 4 , then x is even

Compound Propositions: iff

Let P and Q be propositions, the truth value of the proposition $P \leftrightarrow Q$ is defined as follows:

P	Q	$P \leftrightarrow Q$
T	T	T
T	F	F
F	T	F
F	F	T

■ P iff Q, biconditional Statement

- $P \leftrightarrow Q$ is true when $P=Q$

Compound Propositions: iff

■ P: "You solve the Goldbach conjecture"
Q : "You get an A in course"

- $P \leftrightarrow Q:$
- "You will get an A in this course iff you solve the Goldbach conjecture"

■ P : " x is divisible by 2 " $\quad Q$: " x is even"

- $P \leftrightarrow Q$:
- x is divisible by 2 iff x is even

Compound Proposition \rightarrow Truth Table

Given a compound proposition, make it's truth table
It gives possible values based on truth values of atomic propositions
Make column for each atomic proposition and compound them to get given proposition

$$
\neg Q \vee(\neg P \wedge Q)
$$

P	Q	$\neg P$	$\neg Q$	$\neg P \wedge Q$	$\neg Q \vee(\neg P \wedge Q)$
T	T	F	F	F	F
T	F	F	T	F	T
F	T	T	F	T	T
F	F	T	T	F	T

Truth Table \rightarrow Compound Proposition

Given a truth table, find a compound proposition for it

P	Q	$P \odot Q$
T	T	F
T	F	T
F	T	T
F	F	F

The true rows method: Our formula should be true, when the input is exactly one of the true rows

■ Formula is true when P and $\neg Q$ are true OR when $\neg P$ and Q are true

- $(P \wedge \neg Q) \vee(\neg P \wedge Q)$

Truth Table \rightarrow Compound Proposition

Given a truth table, find a compound proposition for it

P	Q	$P \odot Q$
T	T	F
T	F	T
F	T	T
F	F	F

The true rows method: Our formula should be true, when the input is not any of the false rows

■ Formula is true when NOT (P and Q are true) AND when NOT $\neg P$ and $\neg Q$ are true

- $\neg(P \wedge Q) \wedge \quad \neg(\neg P \wedge \neg Q)$

Truth Table \rightarrow Compound Proposition

Find a logical formula for the following Truth table

P	Q	$P \odot Q$
T	T	F
T	F	T
F	T	T
F	F	F

■ This is the truth table of $P \oplus Q$
■ The above method will express it in terms of \wedge, \vee, or \neg

Truth Table \rightarrow Compound Proposition

Find a logical formula for the truth table of $(P \rightarrow Q)$

Find a logical formula for the truth table of $\neg(P \rightarrow Q)$

Compound Proposition: Summary

■ Negation a proposition

- Proposition made by combining two propositions with AND, OR, XOR, IF-THEN, IFF
- Can make compound propositions from others

■ Compound proposition \rightarrow Truth Table

- Truth Table \rightarrow Compound Proposition

