CS-210 Discrete Mathematics

1. Prove the following DeMorgan's law for sets using membership table.

$$
\overline{A \cup B \cup C}=\bar{A} \cap \bar{B} \cap \bar{C}
$$

2. Let A, B and C be any sets. Prove the following identity by showing that each side is a subset of the other side.

$$
(A \backslash C) \cup(B \backslash C)=(A \cup B) \backslash C .
$$

3. Let A, B and C be any sets. Show using set identities that

$$
\overline{(A \cup C) \cap B}=\bar{B} \cup(\bar{C} \cap \bar{A}) .
$$

4. For two sets X and Y, let $A=\mathcal{P}(\bar{X} \cap \bar{Y})$ and $B=\mathcal{P}(\bar{X}) \cap \mathcal{P}(\bar{Y})$.

Show that $A=B$.
5. Let X, Y and Z be three sets such that Y and Z have the same cardinalities. Define $A=$ $\mathcal{P}(X \times Y)$ and $B=\mathcal{P}(X) \times \mathcal{P}(Z)$.
Compare the cardinalities of A and B, in what cases are they equal or not.
6. Write down all elements of the following two sets, A and B, where

$$
\begin{gathered}
A=\mathcal{P}(\mathcal{P}(\emptyset)), \\
B=\mathcal{P}(A),
\end{gathered}
$$

and

$$
C=\mathcal{P}(\mathcal{B}) .
$$

7. For $A, B, C \subseteq \mathcal{U}$ Prove that

$$
A \times(B-C)=(A \times B)-(A \times C)
$$

8. Let A, B, C, D be non empty sets.
(a) Prove that $A \times B \subseteq C \times D$ if and only if $A \subseteq C$ and $B \subseteq D$.
(b) What happens to the results of (a) if any of the sets A, B, C, D is empty?
9. Let A, B and C be any sets. Prove the following identity using membership table.

$$
\overline{(A \cap B) \cup(\bar{A} \cap C)}=(A \cap \bar{B}) \cup(\bar{A} \cap \bar{C})
$$

10. Let A and B be any sets. Show using set identities that:
(a) $\overline{(A \cap \bar{B})} \cup B=\bar{A} \cup B$
(b) $A \cup(B \backslash A)=A \cup B$
11. Let A, B and C be any sets. Show using set identities that

$$
(B \backslash A) \cup(C \backslash A)=(B \cup C) \backslash A
$$

12. Let A, B and C be any sets. Show using set identities that

$$
\overline{\overline{(A \cup B) \cap C} \cup \bar{B}}=B \cap C
$$

13. Prove or disprove each of the following for set $\mathrm{A}, \mathrm{B} \subseteq \mathcal{U}$
(a) $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$
(b) $\mathcal{P}(A \cup B)=\mathcal{P}(A) \cup \mathcal{P}(B)$
14. For two sets X and Y, let $A=\mathcal{P}(\bar{X} \cup \bar{Y})$ and $B=\mathcal{P}(\bar{X}) \cup \mathcal{P}(\bar{Y})$.

Show that $A \supseteq B$.
15. Suppose A, B, and C are sets, and $C \neq \emptyset$; Prove that if $A \times C=B \times C$, then $A=B$.

