Problem Set 8

1. Let R be a relation on the set A. Consider the statement
"If R is symmetric and transitive, then R is reflexive"
Find the error in the following claimed proof of the above statement.
Proof: Let $a \in A$. Consider an element b, such that $(a, b) \in R$. Since R is symmetric, if $(a, b) \in R$, then $(b, a) \in R$. So we get that both $(a, b) \in R$ and $(b, a) \in R$. Now because R is transitive we get that $(a, a) \in R$. Since this is true for any element $a \in A$, we get that $(a, a) \in R$ for every element $a \in A$. Hence R is reflexive.
2. Let R be a relation on $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$, such that $((a, b),(c, d)) \in R \leftrightarrow a+d=b+c$, i.e. $R=$ $\{((a, b),(c, d)): a+d=b+c\}$. Note that R is a relation on $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$so it will be a subset of $\left(\mathbb{Z}^{+} \times \mathbb{Z}^{+}\right) \times\left(\mathbb{Z}^{+} \times \mathbb{Z}^{+}\right)$. Show that R is an equivalence relation.
3. Let R be a relation on $\mathbb{Z} \times \mathbb{Z}$ such that $((a, b),(c, d)) \in R \leftrightarrow a d=b c$, i.e. $R=\{((a, b),(c, d))$: $a d=b c\}$.

- Prove or disprove that R is an equivalence relation.

Let $\mathbb{Y}=\mathbb{Z} \backslash\{0\}$ (all integers except 0).
If R is the same relation as above but on the set $\mathbb{Z} \times \mathbb{Y}$, then

- Prove or disprove that R is an equivalence relation.

4. Let R be a symmetric relation. Show that R^{n} is a symmetric for all positive integers n.
5. Show that if R and S are both n-ary relations, then $P_{i_{1}, i_{2}, \ldots, i_{m}}(R \cup S)=P_{i_{1}, i_{2}, \ldots, i_{m}}(R) \cup$ $P_{i_{1}, i_{2}, \ldots, i_{m}}(S)$
6. Construct the table obtained by applying applying the join operator J_{2} to the relations in Tables 1 and 2.

TABLE 1 Part_needs			TABLE 2 Parts_inventory				
Supplier	Part_number	Project	Part_number	Project	Quantity	Color_code	
23	1092	1	1001	1	14	8	
23	1101	3	1092	1	2	2	
23	9048	4	1101	3	1	1	
31	4975	3	3477	2	25	2	
31	3477	2	4975	3	6	2	
32	6984	4	6984	4	10	1	
32	9191	2	9048	4	12	2	
33	1001	1	9191	2	80	4	

7. Recall the definition of congruence $\bmod m$, i.e.

$$
a \equiv b(\bmod m) \text { if and only if } m \mid(a-b)
$$

or equivalently

$$
a \equiv b(\bmod m) \text { if and only if }(a \bmod m)=(b \bmod m) .
$$

Let $m \geq 4$ be an integer. Let \mathbb{Z}_{m} be a binary relation on the set of integers defined as follows:

$$
\mathbb{Z}_{m}=\{(x, y): x \equiv y(\bmod m)\} .
$$

- Show that \mathbb{Z}_{m} is an equivalence relation for all $m \geq 4$.
- How many equivalence classes of \mathbb{Z}_{m} are there?
- What are the equivalence classes of \mathbb{Z}_{m} ?

