CS-210 Discrete Mathematics

Problem Set 8

1. Let R be a relation on the set A. Consider the statement

"If R is symmetric and transitive, then R is reflexive"

Find the error in the following claimed proof of the above statement.

Proof: Let $a \in A$. Consider an element b, such that $(a, b) \in R$. Since R is symmetric, if $(a, b) \in R$, then $(b, a) \in R$. So we get that both $(a, b) \in R$ and $(b, a) \in R$. Now because R is transitive we get that $(a, a) \in R$. Since this is true for any element $a \in A$, we get that $(a, a) \in R$ for every element $a \in A$. Hence R is reflexive.

- 2. Let R be a relation on $\mathbb{Z}^+ \times \mathbb{Z}^+$, such that $((a, b), (c, d)) \in R \leftrightarrow a + d = b + c$, i.e. $R = \{((a, b), (c, d)) : a + d = b + c\}$. Note that R is a relation on $\mathbb{Z}^+ \times \mathbb{Z}^+$ so it will be a subset of $(\mathbb{Z}^+ \times \mathbb{Z}^+) \times (\mathbb{Z}^+ \times \mathbb{Z}^+)$. Show that R is an equivalence relation.
- 3. Let R be a relation on $\mathbb{Z} \times \mathbb{Z}$ such that $((a, b), (c, d)) \in R \leftrightarrow ad = bc$, i.e. $R = \{((a, b), (c, d)) : ad = bc\}$.
 - Prove or disprove that R is an equivalence relation.
 Let 𝒴 = 𝔼 \ {0} (all integers except 0).

If R is the same relation as above but on the set $\mathbb{Z} \times \mathbb{Y}$, then

- Prove or disprove that R is an equivalence relation.
- 4. Let R be a symmetric relation. Show that R^n is a symmetric for all positive integers n.
- 5. Show that if R and S are both n-ary relations, then $P_{i_1,i_2,\ldots,i_m}(R \cup S) = P_{i_1,i_2,\ldots,i_m}(R) \cup P_{i_1,i_2,\ldots,i_m}(S)$
- 6. Construct the table obtained by applying applying the join operator J_2 to the relations in Tables 1 and 2.

TABLE 1 Part_needs			TABLE 2 Parts_inventory			
Supplier	Part_number	Project	Part_number	Project	Quantity	Color_code
23	1092	1	1001	1	14	8
23	1101	3	1092	1	2	2
23	9048	4	1101	3	1	1
31	4975	3	3477	2	25	2
31	3477	2	4975	3	6	2
32	6984	4	6984	4	10	1
32	9191	2	9048	4	12	2
33	1001	1	9191	2	80	4

7. Recall the definition of congruence mod m, i.e.

 $a \equiv b \pmod{m}$ if and only if m | (a - b)

or equivalently

 $a \equiv b \pmod{m}$ if and only if $(a \mod m) = (b \mod m)$.

Let $m \ge 4$ be an integer. Let \mathbb{Z}_m be a binary relation on the set of integers defined as follows:

$$\mathbb{Z}_m = \{ (x, y) : x \equiv y \pmod{m} \}.$$

- Show that \mathbb{Z}_m is an equivalence relation for all $m \geq 4$.
- How many equivalence classes of \mathbb{Z}_m are there?
- What are the equivalence classes of \mathbb{Z}_m ?