
CS-210 Discrete Mathematics

Problem Set 6

1. Prove by induction that for n ≥ 3, any n-elements set has n(n−1)(n−2)/6 3-elements subsets.

2. Suppose that five one and four zeros are arranged around a circle. Between any two equal
bits you insert a 0 and between any two unequal bits you insert a 1 to produce nine new bits.
Then you erase the nine original bits. Show that when you iterate this procedure, you can
never get nine zeros. [Hint: Work, backward, assuming that you did end up with nine zeros.]

3. Let a1, a2, a3, . . . be (recursively) defined as follow:

� Base cases: a1 = 3 and a2 = 4.

� ai = ai−2 + 2ai−1

Prove by strong induction that for every k > 0, a2k is even and a2k−1 is odd.

4. What is wrong with this “proof”?

“Theorem”: Any set of n ≥ 2 lines, no two of which are parallel to each other, intersect at a
common point.

“Basis Step”: The statement is clearly true for n = 2, as if two lines are not parallel, then
they intersect at exactly one (common) point.

“Inductive Hypothesis”: The statement is true for n = k; i.e. any set of k lines intersect at a
common point.

“Inductive Step”: We will show that if any set of k non-parallel lines intersect at a common
point, then any set of k + 1 non-parallel lines intersect at a common point. Consider any set
of k + 1 lines, l1, l2, l3, . . . , lk+1. By the inductive hypothesis, the (sub)set of lines l1, l2, . . . , lk
intersect at a common point, say that point is p1. Also by the inductive hypothesis, the
(sub)set of lines l2, l3, . . . , lk+1 intersect at a common point, say that point is p2. We will
show that p1 = p2. Indeed, if p1 6= p2, then all lines containing both p1 and p2 must be the
same (as two distinct points exactly determine a line, in other words if two lines have two
distinct points in common, then those two lines are the same). Since all our lines are distinct,
therefore we must have that p1 = p2. Hence all the k + 1 lines contain the point p1 = p2, i.e.
they intersect at the common point p1 = p2.

5. Prove that for every positive integer n
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6. Prove 2n > n! for all n ∈ Z+, n > 3.
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(b) Prove that for all n ∈ Z+
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8. Let S1 and S2 be two sets where |S1| = m, and |S2| = r (m, r ∈ Z+) and the elements

of S1, S2 are in ascending order. The elements in S1 and S2 can be merged into ascending
order by making no more than m+r−1 comparisons. Use this result to establish the following.

For n ≥ 0, let S be a set with |S| = 2n. Prove that the number of comparisons needed
to place the elements of S is ascending order is bounded above by n.2n.

9. Prove that for any positive integer n,
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where Fi is the ith Fibonacci number

10. Let L0, L1, L2, . . . denote the Lucas numbers, where (1) L0 = 2, L1 = 1; and (2) Ln+2 =
Ln+1 + Ln for n ≥ 0. When n ≥ 1, prove that
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11. Let a1, a2, . . . , an be positive real numbers. Let A and G be the arithmetic and geometric
mean for these numbers respectively. Use mathematical induction to prove that A ≥ G

12. Consider the sequence

dn =


d2n−1

dn−2

if n ≥ 3

2 if n = 1

3 if n = 2

Prove that dn =
3n−1

2n−2
for n ≥ 1

13. Consider the sequence
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14. For every positive integer there is a unique sequence of digits d0, d1, . . . , dk that gives decimal
representation of n.
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