CS-210 Discrete Mathematics

Problem Set 6

1. Prove by induction that for n > 3, any n-elements set has n(n—1)(n—2)/6 3-elements subsets.

2. Suppose that five one and four zeros are arranged around a circle. Between any two equal
bits you insert a 0 and between any two unequal bits you insert a 1 to produce nine new bits.
Then you erase the nine original bits. Show that when you iterate this procedure, you can
never get nine zeros. [Hint: Work, backward, assuming that you did end up with nine zeros.|

3. Let ay,as,as, ... be (recursively) defined as follow:

e Base cases: a; = 3 and ay = 4.

® a; =a; 2+ 2a;1
Prove by strong induction that for every k > 0, ag is even and aqp,_; is odd.
4. What is wrong with this “proof”?

“Theorem”: Any set of n > 2 lines, no two of which are parallel to each other, intersect at a
common point.

“Basis Step”: The statement is clearly true for n = 2, as if two lines are not parallel, then
they intersect at exactly one (common) point.

“Inductive Hypothesis”: The statement is true for n = k; i.e. any set of k lines intersect at a
common point.

“Inductive Step”: We will show that if any set of £ non-parallel lines intersect at a common
point, then any set of k + 1 non-parallel lines intersect at a common point. Consider any set
of k4 1 lines, Iy, 13,13, ..., l;+1. By the inductive hypothesis, the (sub)set of lines I, s, ..., lx
intersect at a common point, say that point is p;. Also by the inductive hypothesis, the
(sub)set of lines [y, ls,...,lx+1 intersect at a common point, say that point is py. We will
show that p; = po. Indeed, if p; # po, then all lines containing both p; and p, must be the
same (as two distinct points exactly determine a line, in other words if two lines have two
distinct points in common, then those two lines are the same). Since all our lines are distinct,
therefore we must have that p; = p,. Hence all the k + 1 lines contain the point p; = po, i.e.
they intersect at the common point p; = ps.

5. Prove that for every positive integer n
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6. Prove 2" > n! for all n € Z*,n > 3.

1 1 1
7. For n € Z*, let H,, denote the nth harmonic number i.e H; = 1 + 3 + 3 4=
1
(a) For all n € N prove that 1+ (g) < Hon
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(b) Prove that for all n € Z+

S = [ - [

Let S; and Sy be two sets where |Si| = m, and |Ss| = r (m,r € Z") and the elements
of 51,55 are in ascending order. The elements in S; and S, can be merged into ascending
order by making no more than m-+r—1 comparisons. Use this result to establish the following.

For n > 0, let S be a set with |S| = 2". Prove that the number of comparisons needed
to place the elements of S is ascending order is bounded above by n.2".

Prove that for any positive integer n,
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=1- where F; is the ith Fibonacci number

Let Lo, Ly, L2,... denote the Lucas numbers, where (1) Ly = 2,L; = 1; and (2) L0 =
Ly + L, for n > 0. When n > 1, prove that

LI+ L5+ Li+...+L2=L,Lyq —2

Let ai,as,...,a, be positive real numbers. Let A and G be the arithmetic and geometric
mean for these numbers respectively. Use mathematical induction to prove that A > G

Consider the sequence

d2
J* ifn >3
n—2
=92  ifn=1
3 ifn=2
n—1
Prove that d,, = o2 forn>1
Consider the sequence
Tp_1+ if n > 2
T'n = Tn—1
1 ifn=1
Prove that r, < +/3n — 2
For every positive integer there is a unique sequence of digits dg, dq, . . ., d that gives decimal

representation of n.

Prove that



