CS-210 Discrete Mathematics

Problem Set 6

1. Prove by induction that for $n \geq 3$, any n-elements set has $n(n-1)(n-2) / 63$-elements subsets.
2. Suppose that five one and four zeros are arranged around a circle. Between any two equal bits you insert a 0 and between any two unequal bits you insert a 1 to produce nine new bits. Then you erase the nine original bits. Show that when you iterate this procedure, you can never get nine zeros. [Hint: Work, backward, assuming that you did end up with nine zeros.]
3. Let $a_{1}, a_{2}, a_{3}, \ldots$ be (recursively) defined as follow:

- Base cases: $a_{1}=3$ and $a_{2}=4$.
- $a_{i}=a_{i-2}+2 a_{i-1}$

Prove by strong induction that for every $k>0, a_{2 k}$ is even and $a_{2 k-1}$ is odd.
4. What is wrong with this "proof"?
"Theorem": Any set of $n \geq 2$ lines, no two of which are parallel to each other, intersect at a common point.
"Basis Step": The statement is clearly true for $n=2$, as if two lines are not parallel, then they intersect at exactly one (common) point.
"Inductive Hypothesis": The statement is true for $n=k$; i.e. any set of k lines intersect at a common point.
"Inductive Step": We will show that if any set of k non-parallel lines intersect at a common point, then any set of $k+1$ non-parallel lines intersect at a common point. Consider any set of $k+1$ lines, $l_{1}, l_{2}, l_{3}, \ldots, l_{k+1}$. By the inductive hypothesis, the (sub)set of lines $l_{1}, l_{2}, \ldots, l_{k}$ intersect at a common point, say that point is p_{1}. Also by the inductive hypothesis, the (sub)set of lines $l_{2}, l_{3}, \ldots, l_{k+1}$ intersect at a common point, say that point is p_{2}. We will show that $p_{1}=p_{2}$. Indeed, if $p_{1} \neq p_{2}$, then all lines containing both p_{1} and p_{2} must be the same (as two distinct points exactly determine a line, in other words if two lines have two distinct points in common, then those two lines are the same). Since all our lines are distinct, therefore we must have that $p_{1}=p_{2}$. Hence all the $k+1$ lines contain the point $p_{1}=p_{2}$, i.e. they intersect at the common point $p_{1}=p_{2}$.
5. Prove that for every positive integer n

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}>2(\sqrt{n+1}-1)
$$

6. Prove $2^{n}>n$! for all $n \in \mathbb{Z}^{+}, n>3$.
7. For $n \in \mathbb{Z}^{+}$, let H_{n} denote the nth harmonic number i.e $H_{i}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{i}$
(a) For all $n \in \mathbb{N}$ prove that $1+\left(\frac{n}{2}\right) \leq H_{2^{n}}$
(b) Prove that for all $n \in Z^{+}$

$$
\sum_{j=1}^{n} j H_{j}=\left[\frac{n(n+1)}{2}\right] H_{n+1}-\left[\frac{n(n+1)}{4}\right]
$$

8. Let S_{1} and S_{2} be two sets where $\left|S_{1}\right|=m$, and $\left|S_{2}\right|=r\left(m, r \in \mathbb{Z}^{+}\right)$and the elements of S_{1}, S_{2} are in ascending order. The elements in S_{1} and S_{2} can be merged into ascending order by making no more than $m+r-1$ comparisons. Use this result to establish the following.

For $n \geq 0$, let S be a set with $|S|=2^{n}$. Prove that the number of comparisons needed to place the elements of S is ascending order is bounded above by $n \cdot 2^{n}$.
9. Prove that for any positive integer n,

$$
\sum_{i=1}^{n} \frac{F_{i-1}}{2^{i}}=1-\frac{F_{n+2}}{2^{n}} \text { where } F_{i} \text { is the ith Fibonacci number }
$$

10. Let $L_{0}, L_{1}, L 2, \ldots$ denote the Lucas numbers, where (1) $L_{0}=2, L_{1}=1$; and (2) $L_{n+2}=$ $L_{n+1}+L_{n}$ for $n \geq 0$. When $n \geq 1$, prove that

$$
L_{1}^{2}+L_{2}^{2}+L_{3}^{2}+\ldots+L_{n}^{2}=L_{n} L_{n+1}-2
$$

11. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers. Let A and G be the arithmetic and geometric mean for these numbers respectively. Use mathematical induction to prove that $A \geq G$
12. Consider the sequence

$$
d_{n}= \begin{cases}\frac{d_{n-1}^{2}}{d_{n-2}} & \text { if } n \geq 3 \\ 2 & \text { if } n=1 \\ 3 & \text { if } n=2\end{cases}
$$

Prove that $d_{n}=\frac{3^{n-1}}{2^{n-2}}$ for $n \geq 1$
13. Consider the sequence

$$
r_{n}= \begin{cases}r_{n-1}+\frac{1}{r_{n-1}} & \text { if } n \geq 2 \\ 1 & \text { if } n=1\end{cases}
$$

Prove that $r_{n} \leq \sqrt{3 n-2}$
14. For every positive integer there is a unique sequence of digits $d_{0}, d_{1}, \ldots, d_{k}$ that gives decimal representation of n.
15. Prove that

$$
\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \geq \sqrt{n}
$$

